
CSCE 496/896 - FINAL PROJECT REPORT, MAY 2010 1

Geographically Separated WSN Communication
Management Project

gfour: Michael Gubbels, Stephen Mkandawire, Scott Robinson, John Tooker

Abstract—Circumstances arise when geographically separated wireless sensor networks need to be joined together as if they were
a uniform network. In this paper presents a system that address this issue, enabling wireless sensor networks to communicate via
Internet. This system requires wireless sensor networks to register as clients to a centralized server that manages client identification
and facilitates communication between clients. Clients can communicate in three ways in the current implementation of this system. A
client can (1) relay a message to another client, (2) broadcast a message to all clients, or (3) send a message to the server to store
in its database. A client wireless sensor networks must have Internet connectivity. In our implementation, wireless sensor networks
connect to the Internet through an Internet gateway, which consists of a sensor mote connected via serial connection to a computer
with Internet-connectivity that is running the client software that relays messages from the gateway mote to the server. We refer to
the sensor mote that is connected via serial to a computer as a sink mote. Similarly, we refer to the computer that the sink mote is
connected to as a sink. A client is an application that is connected via an Internet stream socket to the server being run by some
hardware platform. We use the term client platform to refer to the hardware platform running the client application. A client wireless
sensor network is a wireless sensor network that includes at least one sink mote that can communicate with a sink.

Index Terms—Wireless Sensor Networks, Server, TelosB, TinyOS

F

1 INTRODUCTION

THIS project links multiple wireless sensor networks
(WSN) together via the internet. There are many

circumstances where geographically separated WSNs
should be viewed as one large network. This project
is a server interface that can host multiple WSNs dy-
namically. Each WSN needs one sink node to connect
to the internet and relay information to the server. The
server takes care of directing traffic flow similar to the
way traffic is directed within the networks themselves.
Figure 1 shows multiple WSN connected via central
server.

The need to connect and monitor multiple separate
networks motivates this design. Take building mainte-
nance for example, suppose there are pressure sensors
in the foundation of every building. Within the build-
ing, data could be transmitted and processed, but a
campus may have many buildings to maintain. If each
building’s network is connected together, data can be
analyzed together, trends can be monitored (i.e. what
results an earth quake has on each buildings foundation)
and patterns discovered. A building foundation business
could monitor hundreds of buildings without physically
visiting any of them, saving money.

Using a server also offers many advantages. First,
the server can perform processor heavy in-network
computation analysis. It can also aggregate and store
data. Client applications can receive or monitor data
and act upon it when needed without the worry of
energy consumption restrictions (like a user interface, or
graphics processing software). Another advantage is the
ability to implement ”virtual networks” as well. These

Fig. 1. Multiple WSN and applications Connected via a
central host

networks could be used to test the system and are really
just a subset of the client applications that could be
implemented.



CSCE 496/896 - FINAL PROJECT REPORT, MAY 2010 2

2 RELATED WORK

As wireless sensor networks is a fairly new research area,
there has not been a great deal of research done regard-
ing geographically separated sensor networks communi-
cating via a network connected server. Although, since
this project covers a very broad concept there are a few
other projects that contain related ideas. There are not
any other published research projects aimed at using a
server to hide the fact that not all nodes connected are
in close proximity geographically. Although there have
been papers describing the use of an Internet-connected
node to allow remote access to a WSN.

At the University of Nebraska-Lincoln, a project was
done on Heterogeneous Sensor Networks 1. It focused on
the interoperation of multiple remote sensor networks
via the Internet as well as creating a new cross-layer
MAC, routing and transport protocol supporting next-
generation hardware. Their main focus was on the proto-
col and only briefly explained how the sink nodes would
interface the wireless sensor network to an Internet-
connected sink.

Previous work and research has been done to find
efficient ways to collect data from a WSN and compile it
for viewing on an embedded web server for remote users
to view and interact with. This was demonstrated in a
paper by Dejan Raskovic, Venkatramana Revuri, David
Giessel and Aleksander Milenkovic 2. They presented an
implementation of a platform-independent embedded
web server and its integration in to a network of wireless
sensor nodes. Some services provided by their server
includes remote monitoring, email alerts about critical
issues in the WSN, secure access to modules that change
the operation of the WSN and the ability to shut down
sensor nodes. This project can be related to this one in
that it integrates a way to communicate to the internet
via a server and directs data between the server as well
as the network..

From the lack of documented research in this area it
can be seen that there is much to be discovered in terms
of actual applications and concept implementation. As
an emerging field, there is still much work that can be
done in wireless sensor networks, and specifically sensor
network communication over IP. This project explores
the possibilities of Internet-connected WSNs and what
can be done to effectively and efficiently communicate
between each network.

1. Akin, Haccius, Schemm, Viets, Wang (2008) Heterogeneous Sensor
Networks, University of Nebraska-Lincoln

2. Raskovic, Revuri, Giessel and Milenkovic (2007) Embedded Web
Server for Wireless Sensor Networks, University of Alaska Fairbanks,
University of Alabama in Huntsville

3 PROJECT DESCRIPTION

The major milestones of the project are:
1) Establish communication between multiple, geo-

graphically separated WSNs
2) Send messages between WSNs

a) Broadcasting messages to all connected clients
b) Sending client-to-client messages through the

centralized server (e.g., from one WSN to an-
other)

c) Sending messages client-to-server for storage
in a centralized database (i.e., a client sends a
message containing data to the server that the
server stores in a database)

3) Create a simple client application
4) Create light shows and control the lights outside

the Schorr Center as requested by WSN or a client
application

5) Create a server that will facilitate the milestones
listed above

There are three major components of this project: the
server, sink (with mote), and the wireless nodes them-
selves. They all work together so that any single node
can communicate with every other node, regardless of
whether they are in the same physical wireless network.
The server and its relation to each network are the main
focuses of the project’s design.

The server will be exploited as its computational
power is much greater than the network nodes or even
the network sinks. The server’s first job is to manage the
different wireless networks attached. It will also serve to
process data via applications that will act like a network
themselves.

The sinks will be the connection between the server
and the wireless sensor networks, each WSN will require
a sink. Each sink will have a special mote attached to it as
well. The sink’s mote will receive a wireless message and
forward this message to the sink, which will forward the
message to the server. Messages may go the other way:
from the server to the sink to the mote to be transmitted
to the WSN (using protocols and designs outside the
scope of this project).

The wireless nodes themselves will act like any other
wireless network. They will take measurements, process
a little data and relay information to and from the source.
The issues involved in isolated WSN will not be the focus
of this project, other than a single node can transmit to
any other node, regardless of its physical location.

To demonstrate the project’s functionality, motes will
detect a light source’s intensity in multiple WSNs. A
threshold will be set, if the sensed light’s brightness
crosses a that threshold, data will be sent from the
sensor mote. That message will be picked up by the
sink, transmitted to the server and the server will relay
the message to a sink in another WSN or store that
message in a database. A special WSN will contain the
Light Gateway system used to control the lights on the
side of the Schorr Center. A special, client application



CSCE 496/896 - FINAL PROJECT REPORT, MAY 2010 3

will also read the database, send messages and display
information to the user in a graphics manner.

4 PROJECT DETAILS

4.1 Server
The server will direct network traffic, provide addi-
tional computation abilities and improve accessibility.
The server may be transparent to the nodes themselves,
just serving as a tool to transfer a message from one
network to another, or the server may communicate
with the nodes directly, both requesting and receiving
information.

The server’s most basic task is to manage the flow of
packets received from registered clients. Only registered
clients can connect to the server, therefore, a connected
client is a registered client. Connected clients can com-
municate in three ways. They can (1) relay packets to
another connected client, (2) broadcast packets to all con-
nected clients, or (3) send packets to the server with data
for storage into its database. All packets are 16 bits in
length and consist of three fields: the (1) source address,
(2) destination address, and (3) payload data. The source
address and destination address fields occupy 4 bits, and
the data field occupies 8 bits.

[source][destination][data]

This packet structure imposes functional limitations on
the number of clients that can be registered on a system
and the amount of data that can be sent in a straight-
forward manner (an application-level protocol could be
devised that allowed arbitrarily amounts of data to be
sent serially using multiple packets). In particular, since
the source and destination address fields occupy exactly
4 bits, and client IDs are unsigned integers, there are
exactly 16 unique client IDs available (and therefore, 16
uniquely identifiable clients). Two of these client IDs are
reserved for identifying the server itself and to specify all
connected clients simultaneously. These reserved client
IDs are shown in Table 1. Our implementation includes
four client wireless sensor networks and one client ap-
plication in addition to the server. Each of these clients
were assigned a unique client ID, as shown in Table 1.

Messages may be send in a variety of ways. Intra-
network messages will not be passed through the server,
as the sink nodes will not send them. Inter-network
messages will be passed transparently through the server
to other networks. The is also a broadcast address,
allowing for a single node to send a message to every
other node (should that be required). Messages may also
be sent directly to a server application. Each application
will have an address, so the structure of the messages is
uniform, despite the messages destination. Groups could
be created as well, mapping a single address to a specific
set of destinations, all handled by the server. Figure 2
shows three message relations.

The server may implement a virtual network or host
application. This will allow real motes to send messages

Client ID
(base 10)

Client or
Purpose

Purpose or Function

0 Reserved
(Server)

Stores packet data in
server’s MySQL database

1 WSN 1 Sends packets to server
to store in its database

2 WSN 2 Sends packets to server
to store in its database

3 WSN 3 Requests Lights
shows from External
Gateway’s WSN

4 GUI Appli-
cation

Reads the server’s
database, analysis its
data, requests shows
and provides a GUI to
the users

6 WSN 4 Sends a light show re-
quest message ’directly’
to WSN 3

15 Reserved (all
connected
clients)

Broadcasts packet

TABLE 1
Claint and client ID associations for our server, wireless

sensor network clients, and application client
implementations.

Fig. 2. Multiple Message Destination: 1) Point to Point
2)Broadcast 3) To/From Application.

to an imaginary device’s address. Using the faster pro-
cessor/memory on the server, much more computation
can be done. Servers also have much more room to store
and log data than nodes in the network using large hard
drives and databases.

An example of the server’s code is seen below. The



CSCE 496/896 - FINAL PROJECT REPORT, MAY 2010 4

pseudocode segment highlights the decisions that must
be made when an incoming message are received. The
server code was written in C.

void messageReceived(Message msg){
// see if the address is valid
// (registered) both the source
// and destination address
if (registeredAddress(msg){

if (msg.destination == 0000){
// this message goes to
// he MySQL DB
dbWrite(msg.payload);

} else if (msg.dest == 1111){
// broadcast this message
// to all WSN
broadcast(msg.payload);

} else {
// message has a specific
// destination
forward(msg);

}
// could also match the
// destination to a group ID
// and forward the message
// to specific groups.

}
// else ignore this message

}

Code Segment - Server

User interfaces are also important, the server will be
able to serve a webpage interface or provide a socket
for a client application. A web interface could be set up
allowing messages to be sent directly to and from nodes
from a browser. This could be done directly or as part of
an interactive application or used by developers to test
the network.

4.2 Sink

The sink’s role is straight forward. It watches for mes-
sages from the server and transmits them to its con-
nected mote via USB (serial) for it to disperse to the
network. The sink also waits from messages from its
WSN and relays them directly to the server. The sink
does not require any additional computation, though
it could be used for some in-network processing, the
server could do the same processing much quicker. Code
Segment - Sink highlights the sink’s simple role, the
actual code was written in C.

The sink does need to be connected to the internet and
supplied with sufficient power. It may not be feasible
to have a remote, battery powered sink node, though
as solar power and cellular technologies develop, this
limitation shrinks.

If a message encoding scheme were implemented, it
would be the sink’s duty to encrypt and decrypt the
messages.

while(1){
// Communication Order
// 1. Socket -> Serial
// 2. Serial -> Socket

msg = checkForMessage(socket);
if (valid(msg)){

forward(msg, serial);
}

msg = checkForMessage(serial);
if (valid(msg)){

forward(msg, socket);
}

}

Code Segment - Sink

4.3 Sink’s Mote
The mote attached to the sink will transform wireless
messages to messages sent over the USB and vice versa.
They will be implemented using MicaZ and TelosB
nodes. This mote’s only job is to wait for messages and
relay them.

Besides any error correction (i.e. BCH code), the mote
will not have to decode or interpret the message. It
will either transmit it directly to the sink (via serial) or
broadcast it to the network preserving the address and
data information (via IEEE 802.15.4).

4.4 WSN Motes
As was said before, the mote’s role will not be the
focus of this project. Simple sensors data will be directly
mapped to show requests. In general, each mote would
have a unique ID number (address). This project ab-
stracts the actual WSN as a single node attached directly
to the sink.

5 RESULTS

Each of the milestone requirements have been met. To
demonstrate this, four WSNs were used. One of the
networks was ’attached’ to the Schorr Center’s light
controller network; two other networks sent messages
to a database on the server, and one network sent show
requests directly to the light controller network. The
server stored information in a database and a client
program periodically queries the server and sends a light
show request based on the total lights on (as stored
in the database). This client program also offers a user
interface. This setup is described in Figure 3.

The server meets the specified requirements. It can
receive and relay messages to other networks. For the
demonstration, a set of networks sent data directly to
the server’s database application (which has a message
address). Another network sent data through the server
directly to the light controller network. A client ap-
plication queried the database and sent show request



CSCE 496/896 - FINAL PROJECT REPORT, MAY 2010 5

Fig. 3. A figure demonstrating the communication network that demonstrates the project functionality. The upper
left WSNs send their light data directly to the server’s database, the client program (upper center) displays a user
interface and emits a show request message. The lower left WSN sends a show request directly to the light controller
network, shown on the right. The light shows in the upper right correspond to zero, one, two and three lights on (via
the database) and the bottom right light shows correspond to one of two show requests from the lower left WSN

messages directly to the light controller network at cer-
tain intervals. The server was capable of boradcasting
messages, though this was not demonstrated. A Linux
server was used, but this is not a requirement.

The server also provided a webpage that allowed
users to register a network. Messages sent to the server
from unknown address were ignored. A more advanced
form of security was not implemented, but could have
been added without changing the purpose of this project.

TCP socket communication protocols were used to
transmit messaged from the sinks in each WSN to the
server itself. Messages were transmitted fairly quickly
from network to network. It took less than one second
for a show request to be sent from one network and
appear on the External Light Gateway’s console window
(in another network); but a comprehensive speed test
was not administered.

The WSN themselves consisted of just one sensor
mode (TelosB) and one sink (Linux laptop). Each mote
sensed the ambient light, when the light crossed a certain
threshold, as message was sent. Most of the motes sent
a message directly to the database on the server, though
one mote sent show requests directly to the light show’s
network. The bulk of the code is summarized in the Code
Segment - Mote, though the actual code was written in
nesC:

The client program showed the dynamic functionality
of this project. Here another machine ran code that in-
terfaced directly with the server and with another WSN.
This program periodically queried the database to see
how many networks were currently under bright light.
This number was converted to a show request and sent
out; a visual representation of the Schorr Center lights
was also displayed. The program also keeps track of the

event void timer0.fired(){
//read the light sensor
call Read.read();

}
event void Read.readDone(data){

if (data - oldData > THRESHOLD){
// light changed
oldData = data;

// update LEDs for debugging:
updateLED(data > THRESHOLD);

// source, destination, payload
send(MY_ADDR, 0000

, data > THRESHOLD);
}

}

Code Segment - Mote

ambient light history and displayed this as a graph on
the screen. A code sample showing the period checking
of the database, sending messages and updating the user
interface is described in Code Segment - Application; the
original code was implemented in Java.

The lights themselves correspond to one of six show
requests. Figure 4 represents the shows available. Shows
one through four represent zero, one, two or three WSN
networks having bright light. These show requests came
from the client application and only represent the WSNs
that send their data to the database.

Shows five and six, which correspond to requests from
the WSN that sent show requests directly to the light
controller.

The lights were not updated too frequently (every



CSCE 496/896 - FINAL PROJECT REPORT, MAY 2010 6

void timerThread.run(){
// the database is on the
// server, query it via
// the network.
bResult = queryDBviaSocket(socket);

// count the number of lights
// on as recored in the
// database query result.
int lightsOn = 0;
for each dbResult.entries {

if (dbResult[i].isOn){
lightsOn++;

}
}

// update the line graph GUI
updateGraph(System.currentTime

, lightsOn);

// update the light display GUI
updateLightsImage(lightsOn);

// actually send a show request
// message to the server
sendMessage(lightsOn, socket_info);

}

Code Segment - Application

30 seconds) as they seemed to freeze if refreshed more
often. The light controller gateway did show that each
message was received correctly even if the light con-
troller itself was frozen.

Multiple programming languages were used for each
component showing the flexibility of the systems as a
whole by using existing networking standards.

6 CONCLUSION

The geographically Separated WSN Communication
Management Project succeed in connecting multiple
wireless sensor networks together while offering a dy-
namic communication scheme. The lights on the Schorr
Center and client interface show the different ways to
communicate and process information, from point to
point communication to database storage and remote
client processing. As solar energy is harnessed more
effectively and cellular coverage grows, many remote
WSN cites will be able to take advantage of the con-
nection benefits that geographically separated commu-
nication can provide.

7 FUTURE WORK

The work presented in this paper could be extended in
many ways. In our work, we focused on a designing
and implementing a centralized server and client sinks
to enable wireless sensor networks to communicate. We
are interested in extending this work to develop a system
to label the data stored in the server’s database according
to some characteristic of the data, such as the type

Fig. 4. The different shows available. Shows 1-4 corre-
spond to the database. Shows 5 and 6 correspond to the
mote directly communicating to the light controller’s WSN.

of information it represents, or the nature of the data
on a conceptual level (e.g., noisy data, weather data,
temperature data, geographical, spacial and temporal
labels, etc.), or a combination of different kind of labels.
The purpose of labeling the data is to allow queries to
be submitted to the server by client application using
a query language that doesn’t require client application
developers to know the details of any particular wireless
sensor network client. Ideally, client application devel-
opers would be able to query the server to return data
according to the purpose of the client application and
needs of the application’s developer. These queries might
be made using relational operators or constraints, such
data type and spatial or temporal constraints.

Another opportunity for future work is in developing
automated services associated with particular wireless
sensor networks, for use by either anonymous or reg-
istered clients, which might be other wireless sensor
networks. For example, a service might provide weather
forecasts predicted using some predictive model and
data aggregated from multiple wireless sensor networks
associated with the geographical location of interest.



CSCE 496/896 - FINAL PROJECT REPORT, MAY 2010 7

One immediate extension that would be very useful
would be to expand the client-server application layer
protocol used for communication. To facilitate transmis-
sion of large data sets (such as results from a database
query), the protocol could be extended with standard
message fields that correspond to queries and messages
for indicating the beginning and end of serialized data
being sent. When a large data query is requested, it
may be appropriate for the server application to create
a separate process that exists for the duration required
to send the data. Since the reliability of client WSNs
can vary significantly, the protocol used to relay data
should be appropriately robust or allow the protocol,
error correction, and error handling to be (optionally)
specified per query.

Communication could be expanded in a number of
other ways. The server could be extended to allow
UDP clients that are in environments where constant
connection doesn’t make sense and data is submitted
to the database when possible. A variation of broadcast
could be implemented that allows a WSN to broadcast
to a subset of the other WSNs. The server and client
functionalities could be distributed so each client could
function as a combined client and server to enable clients
to establish direct connections via Internet sockets and
bypass the centralized server and communicate in a de-
centralized manner. Permissions could also be assigned
to clients during the client registration process that could
determine the types of communication operations that a
client would be allowed to perform.

8 APPENDIX: COMPILING AND RUNNING
CODE

8.1 Prerequisites
The applications written for this project have various
prerequisites. A HTTP web server with PHP and MySQL
support is required. A MySQL database named wsnhub
is required with tables named clients and data. This
database and these tables can be created using the
script file ’Web Server/deploy_website.sh’. Also
required are the MySQL C API and the Tiny OS C API.

8.2 Server (Client ID = 0)
To compile the server, enter:
cd Server
make
To run the server, enter:
./server
This starts the server, which listens for TCP socket

connections on port 9034.

8.3 Motes - TelosB (Client ID = 1,2,3, 6)
• ID = 1, 2, to DB - Motes that send data to the

database directly (can set the ID for each mote)
• ID = 3, to External Light Gateway - Mote that talks

to the External Gateway Light Controller

• ID = 6, Point to Point - Mote that sends a show
request directly (through the server) to the light
controller mote

You may need to adjust the ttyUSBn based on how many
TelosBs are plugged into your computer. To compile
the show requester TinyOS nesC code for the TelosB
platform and install the compiled application to a TelosB
mote accessible on /dev/ttyUSB1, enter:
cd "Client WSN Sink - Database Giver"
make telosb install,1 bsf,/dev/ttyUSB1

cd "Client WSN Sink - Show Requester"
make telosb install,3 bsf,/dev/ttyUSB1

cd "Client WSN Sink - Light Remote"
make telosb install,6 bsf,/dev/ttyUSB1

8.4 Client Sink
Place code on a Linux server with TinyOS installed
(or at least the C serial package portion of TinyOS). A
programmed telosB mote needs to be pluggled in order
to run.

To compile the sink client application, enter:
cd "Client Sink" make

To run, enter:
./client <device> <rate> <host IP>

<client ID>

For example, to start the client sink for the light remote
sink mote (Client ID = 6), accessible on /dev/ttyUSB0,
enter:
./client /dev/ttyUSB0 115200 localhost 6

Or, to start the client sink for the show requester sink
mote (Client ID = 3), accessible on /dev/ttyUSB1, enter:
./client /dev/ttyUSB1 115200 localhost 3

8.5 Client Application (Client ID = 4)
The client application requests data directly from the
server’s MySQL database, which is used to generate
show request packets, relayed through the server to the
show requester client wireless sensor network (Client ID
= 3).

To compile, enter:
cd "Client Application" make

To run, enter:
java ServerApp

8.6 Light Shows
The light shows are located in: ./Light_Shows Each
show comprises two files, x.data and x.size where x is
the number of the show. Copy each of these files to the
group folder on the internal gateway /var/www/4


