

MAXI ALARM

Developer’s Guide

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 2 of 64

Information in this document is provided in connection with John products. No license, express or implied, by

estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in

John’s Terms and Conditions of Sale for such products, John assumes no liability whatsoever, and John

disclaims any express or implied warranty, relating to sale and/or use of John products including liability or

warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright

or other intellectual property right. John’s products are not intended for use in medical, life saving, or life

sustaining applications.

John may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined." John reserves these for future definition and shall have no responsibility whatsoever for conflicts

or incompatibilities arising from future changes to them.

John’s PIC Architecture processors (e.g., PIC18F4550 processor) may contain design defects or errors known

as errata which may cause the product to deviate from published specifications. Such errata are not covered

by John’s warranty. Current characterized errata are available in User’s Manual.

Contact your local John sales office or your distributor to obtain the latest specifications and before placing

your product order.

Copies of documents which have an ordering number and are referenced in this document, or other John

literature, may be obtained from:

John Corporation
P.O. Box 7641
Mt. Prospect IL 60056-7641

or visit John’s website at http://www.jtooker.com

Copyright © John Corporation 2008.

* Third-party brands and names are the property of their respective owners.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 3 of 64

Table of Contents

ABOUT THIS MANUAL .. 5

OVERVIEW OF THIS MANUAL’S LAYOUT ... 5

NOTATIONS AND CONVENTION ... 5

Number formats ... 5

Programming Consistencies ... 5

OVERVIEW OF THE SYSTEM ... 7

GENERAL DESCRIPTION ... 7

PROGRAM FLOW ... 8

Reset ... 8

Main Loop .. 8

Interrupts ... 8

States .. 8

DESCRIPTION OF SOURCE FILES .. 8

P18F4550.INC ... 8

18F4550.lkr ... 8

ENEE 440 - SimOnly.asm ... 8

ENEE 440 - PIC18 Alarm Clock Alarms.asm .. 9

ENEE 440 - PIC18 Alarm Clock Buzz.asm ... 9

ENEE 440 - PIC18 Alarm Clock High Int.asm .. 9

ENEE 440 - PIC18 Alarm Clock LED.asm .. 9

ENEE 440 - PIC18 Alarm Clock Low Int.asm ... 9

ENEE 440 - PIC18 Alarm Clock Main.asm ... 9

ENEE 440 - PIC18 Alarm Clock MT.asm .. 9

ENEE 440 - PIC18 Alarm Clock RE.asm .. 9

ENEE 440 - PIC18 Alarm Clock SW.asm ... 9

INTERRUPTS .. 9

High Interrupt ... 9

Low Interrupt (with dispatcher) .. 9

MODES ... 10

Keeping time ... 10

Display ... 12

Switches .. 12

Rotary Encoder ... 17

Changing States .. 17

Alarms ... 19

Alarm Menu ... 20

INITIALIZATION ... 21

REGISTER INITIALIZATION ... 21

RESET CALLS .. 21

INTERRUPTS .. 21

MAIN LOOP .. 22

REFRESHING THE DISPLAY ... 22

MANAGING ALARMS ... 22

MANAGING IN SNOOZE MODE ... 22

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 4 of 64

SWITCHED STATES BASED ON DELAY TIMER ... 23

GOING TO A STATE’S CODE .. 23

STATES .. 24

EXPLANATION .. 24

STATE LIST FORMAT .. 24

HARDWARE ... 38

INPUT AND OUTPUT ... 38

CLOCK .. 38

NON-OBVIOUS METHODS ... 39

STATE JUMP TABLE ... 39

AUTOMATICALLY SWITCHING STATE ... 39

RESPONDING TO PRESSING OF A SWITCH ... 39

APPENDICES ... 40

APPENDIX A: ACRONYMS AND ABBREVIATIONS ... 40

APPENDIX B: GLOBAL AND IMPORTANT VARIABLES ... 41

APPENDIX C: FUNCTION API ... 45

APPENDIX D: MACROS .. 55

APPENDIX E: JSCII TABLE .. 57

APPENDIX F: OTHER CONSTANTS .. 58

SPP Address Definitions ... 58

Rotary Encoder Constants .. 58

LED Segment Definitions (Cathodes) ... 58

LED Segment Bit Definitions (Cathodes) .. 58

LED Area Definitions (Anodes) ... 58

To set the high bit of FSR0 in LED_Write argument to translate the WREG argument ... 58

Alarm Stack Constants .. 58

Timing (in 1/100 of a second) .. 58

APPENDIX G: DEVELOPER’S NOTES ... 59

D10K ... 62

INDEX ... 63

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 5 of 64

About this Manual

Overview of this Manual’s Layout

This manual will start off with general explanations, which will then lead into a deeper discussion of each

structure and will end with appendices. These list certain aspects of the program separate from the overall

picture. After the general description of the alarm clock, functions/subroutines will be grouped together and

described based on how each system acts on as whole. Please be familiar with and refer to Microchip’s

document No. 39632D, PIC18F2455/2550/4455/4550 Data Sheet, available from their website:

http://www.microchip.com/. It will be assumed you, the developer, will find the basic programming techniques

listed in that manual. What will is not covered in that manual, and will be talked about briefly, is the P24

hardware with which PIC18 interfaces.

Notations and Convention

See Appendix A: Acronyms and Abbreviations.

Number formats

Numbers will be listed as ‚0x‛ for hexadecimal interpretation and without ‚0x‛ for decimal interpretation. They

will be stored Little Endian style, the lowest byte at the lowest address. Registers hold 8 bits of data,

instructions take up 2 Bytes in program memory, and the program counter can only point to every other

address in program memory.

1 Word = 2 bytes

Programming Consistencies

Assembler directives will be in CAPITAL LETTERS.

Tabs

Please view with you text editor set for tabs being displayed as 4 spaces. Function labels will exist without

being tabbed over; labels within functions will be preceded by two spaces. Instructions will be preceded by

one tab, instruction arguments three tabs (from beginning of the line).

Comments

When explaining a section of code, they will be lined up with the instructions (one tab). When to the right of an

instruction, they will explain that instruction’s significance.

Not as constant: ‚;;‛ starts an idea, followed on the next line(s) by ‚;‛ then ideas end with ‚;;‛ For example:

 ;; if here, the user has dialed the snooze down to zero,

 ; Turn off snooze alarm. (change the day back 1, just to

 ; make sure it doesn't ring.

 CLRF MASTER_STATE, 0 ;; Turn off snooze alarm, set state

 CLRF DelayState, 0 ; since we've used it for RE

 DECF INDF0 , 1, 0 ; points to SA[date[low]] from before

 GOTO IdentidemVicis ;; Exit snooze stuff.

Buttons

When you see ‘x’ related to a button (pressing ‘x’, ‘x’ button) that character refers to a button as such:

http://www.microchip.com/

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 6 of 64

 ‘a’ = ALARM

 ‘d’ = DAILY ALARM

 ‘s’ = SET

 ‘t’ = TIME

 \//\ = Arrow buttons

Other Notations

Function names in the form QdescriptiveNameQ usually behave as if answering a question, where the

question is related to the descriptive name.

Un-updated References

I am sure you, the reader, will notice many page cross references, but also many pages referenced as $$. I

did not have time to update all of these. So when you see a $$, it refers to that item’s entry in the state list,

function list, variable or macro lists in the appendices (I apologize if you cannot tell the difference, this will

make it harder to find it, try searching the name).

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 7 of 64

Overview of the System

General Description

First we must note that the first 0x1000 lines of code on the PIC are reserved for the boot program, thus

everything for us starts at address 0x1000 and up.

On reset the main function sets up data and interrupts for other functions to run. After this we enter the main

loop, IdentidemVicis, (for responsibilities of the main loop, see page 8). The program flow, as a whole, is

directed by which state is currently being occupied (list of states on page 24). Tasks in the main loop and

interrupts function as ways to update data for each state, with a few exceptions.

Figure 1 is the front panel of the display, it dictates which buttons do what functions and which LED’s have

certain significances.

Figure 2

Switches are arranged as such:

1 3 5 7 9 B (1-8 are arrows, 9-C are mode buttons)

2 4 6 8 A C

LED’s are labeled according to their matrix value: (column, row) starting in the upper left corner.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 8 of 64

Program Flow

Reset

 Initiate registers and interrupts (page 9).

Main Loop

 Refresh LED’s (page 12).

 See if alarm needs to start ringing (page 22).

 See if we are snoozing, execute snoozing code if that is the case (page 22).

 See if we need to change states based on our delay counter (page 23).

 Go to the current state’s code (page 23).

 Repeat

Interrupts

 Update the time/date, decrement time dependent counters (page 11).

 Update the switch state registers (page 12).

 Update the rotary encoder (page 17).

 Sound alarm, not implemented.

States

 Everything else (see all states on page 24).

 Fill display buffer (page 12).

 Set up delay state system (page 17).

 Respond to user input (page 15).

 Update every other global status register not done by the main loop or interrupts.

Description of Source Files

These files appear as they have when I wrote them. Comments were made at the time, so they are genuine,

but may be a little disorganized. The code has not been cleaned up either (but should match the structure I

outlined on page 5 for the most part).

P18F4550.INC

Contains the normal include information to compile assembly files for the PIC18F4550.

18F4550.lkr

Modified for 0x1000 start, use this one, not the default linker file.

ENEE 440 - SimOnly.asm

Include with making project for simulation purposes (when program counter comes to address 0x0, 0x10, 0x18

the get redirected to where address 0x1000, 0x1010 and 0x1018 direct to (respectfully).

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 9 of 64

ENEE 440 - PIC18 Alarm Clock Alarms.asm

Holds alarm constants and functions to set, alter, view alarms and the alarm stacks (page 19).

ENEE 440 - PIC18 Alarm Clock Buzz.asm

Not used, would make sure sounds happens when called from interrupt, but not completed yet.

ENEE 440 - PIC18 Alarm Clock High Int.asm

Directs High interrupt (page 9).

ENEE 440 - PIC18 Alarm Clock LED.asm

Contains constants and functions to refresh display, JSCII constant values as well as output hardware

constancies (page 12).

ENEE 440 - PIC18 Alarm Clock Low Int.asm

Manages low priority interrupts with sub priorities (page 9).

ENEE 440 - PIC18 Alarm Clock Main.asm

Main.asm contains the main function, interrupt declaration, calling of resets, main loop, managing of states,

alarms and snoozing status (see page 22). Also contains code for each state (see page 24).

ENEE 440 - PIC18 Alarm Clock MT.asm

Controls master time, called from by high priority interrupt (see page 11). Also updates other time sensitive

counters (see pages 15, 17).

ENEE 440 - PIC18 Alarm Clock RE.asm

Keeps track of rotary encoder, on interrupt (see page 17).

ENEE 440 - PIC18 Alarm Clock SW.asm

Contains switch constants and functions updated on interrupt (see page 13).

Interrupts

High Interrupt

The high priority interrupt is responsible for keeping track of time. It fires when Timer 1’s counter overflows.

This interrupt fires every hundredth of a second (see page 11 for how this is accomplished). Every hundredth

of a second MASTER_TIME (page $$) gets incremented once.

Low Interrupt (with dispatcher)

The low priority interrupt is divided into two sub-priority interrupts in this implementation. Up to eight sub-

priority interrupts can be managed with the two macros: Sub_P_set_L and Sub_P_ex_L, each interrupt

executing both. It may be helpful to be looking at ‚ENEE 440 – PIC18 Alarm Low Int.asm‛ now.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 10 of 64

The former macro (executed first) looks to see if its interrupt has fired, if so update Start_Srvs (see page $$) to

acknowledge this (states that we need to start servicing this interrupt). Then we clear that interrupt’s flag so

we do not interrupt again.

The latter macro looks to see if we are in the middle of an interrupt, if so, resume. IMPORTANT: if this is the

case, a lower sub-priority interrupt has interrupted a higher sub-priority interrupt, so we wish to continue with

the higher sub-priority interrupt, which is why the macros should be written with the highest sub-priority first.

(Doing these out of order changes which bits correspond to the higher priority). If this current interrupt in not in

progress, we check to see if it needs to be started (looking at bit in Start_Srvs). If so start it (if two interrupts

occur at the same time, this will cause the higher priority to start before the other one does), along with starting

to service, we clear its bit in Start_Srvs and set its bit in In_Service_L (see page $$) which tells us it is running.

Latency

The latency to respond to an interrupt grows with each sub-priority we implement. The highest one will start in

4∙n + 6 cycles, where n is the number of sub-priority interrupts. This assumes each interrupt fires at once.

Note that in by now we have already taken care of the interrupt flags, the only thing we have not done is

backup any variables we need to save. The lowest sub-priority will start in 3∙n + 5∙n = 8∙n cycles. This

assumes that no other interrupts have occurred/still being worked on. The time it takes to resume a higher

sub-priority interrupt when a lower sub-priority interrupt fires is about 4∙n + 3 cycles.

Tasks associated with sub-priorities

The switches are updated at 22.9 Hz via timer 0. (lower sub-priority: 1)

The rotary encoder position is updated at 6510 Hz via timer 2. (higher sub-priority: 3)

The buzzing sound: updated at 3520 Hz, but the interrupt is not actually set up, so it will never ring (actually

just adds latency right now, but kept in since we will want our alarm to make noise, may not be needed with

Pulse Width Modulator). (highest ‘implemented’ sub-priority: 6)

Modes

The word ‘Modes’ will refer to systems of states and interrupts acting together to serve an overall independent

idea.

Keeping time

Accuracy

Off by 12 minutes and 32 seconds per year

Storing time

Aside for what is done in the states, this is where most of the work happens in this alarm clock. Time is kept in

MASTER_TIME (page $$), MASTER_DATE (page $$) and MASTER_DAY (page $$), which hold the current

time (hours, minutes, seconds, hundredth of seconds), current date (0000 through 9999) and current day of the

week. The first two use compact binary coded decimal (compact BCD) to store their numbers.

 Hundredth of seconds range from 00 to 99 in the lowest byte of MASTER_TIME.

 Seconds range from 00 to 59 in the second lowest byte of MASTER_TIME.

 Minutes range from 00 to 59 in the third lowest byte of MASTER_TIME.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 11 of 64

 Hours range from 01 to 24 in the highest byte of MASTER_TIME.

 Date ranges from 0000 to 9999 in both bytes of MASTER_DATE.

 Day of the week is one bit that gets rotated in the 8 bits of MASTER_DAY (-1 is not allowed).

Interrupts, timing and latency

The frequency which we update the time is 1/100 of a second. This is accomplished via the high interrupt.

WREG, STATUS and BSR registers are stored automatically, and we get straight access to this code with

minimal latency. The interrupt fires when timer 1’s counter overflows, this counter is a 2n number. Our clock

runs at 48 MHz, and 48 MHz ∙ 2n ≠ 100 Hz for any n. So how do we get it to interrupt at 100 Hz: adjust the

timer’s counter. At 48 MHz we divide by 4 (four cycles/instruction) to get then by 2 (for prescale) to get the

number of instructions executed in 0.01 seconds: 60,0000 instructions. So if we could set our counter to -

60,000 we would overflow every 0.01 seconds. This can be done by manually setting our counter to 15A0

(since -60,000 = 0x…FF15A0). This would be wonderful if it could be done at the time of overflow, but it

cannot. So we must account for latency, by setting our counter to -60,000 + latency. This latency was found

experimentally via the simulator but there are 6 instructions that need to happen before our counter gets reset,

so set counter to 0x15A6.

Error in the time explained: If high interrupt latency was constant (it is close) we would have not time lost/error

in our system. But that is not the case. The latency is sometimes more that 6 instructions, which introduces

error. Experimentally (see README.txt) we have a relative error of 0.000023826 = 0.0023826%, or loosing 12

minutes and 32 seconds per year, or 14.4 seconds per week.

Other time keeping tasks

We take care of some other tasks in the time keeping interrupt, decrementing the state delay counter (page

17), decrementing the switch hold down counter (page 15) flashing the colon at 1 Hz, 5 Hz or off based on the

current state, and if the alarm in ringing: flash the LED’s red, yellow, green, off at 1 Hz (for display information,

see page 12).

Interrupt Justification

Normally one would not expect an interrupt to commit this much time from the normal program, but here are

some reasons why I decided to implement all of these tasks in the interrupt:

1) Increment the time, takes time to calculate hundredths of seconds up to days of the week.

 Want this to be done as soon as possible, could set another flag and handle it the main loop, but

 that would take more time, and replicate handling the interrupt flag outside an interrupt.

2) Decrement timers.

 If updating the time occurred outside of an interrupt, it would be natural to update the time-based

 counters at the same place; since it made sense outside the interrupt, I left the two together.

3) Updating portions of the display

 These portions of the display rely on the time and the do not need to be updated every time the

 display refresh is called. Overall we save operations.

4) Reason for all of this:

 We only call this function every 60,000 cycles, it does not take too many cycles, which does not

 effect the rotary encoder, the next interrupt that needs to be completed before it’s time roles around

 again. There might be an issue with the sound that has not been addressed since I did not

 complete that portion.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 12 of 64

Display

Buffer and refreshment

I keep a buffer, Display_Buf, which holds hold the values of each of the 7 LED display components: 4 seven

segments, 1 for the punctuation (colon, apostrophe), and the one for the red and one for the green

components of the LED’s. The eighth one would have one bit for the sound output depending on the jumper.

The display needs to be refreshed fairly often, and is done so in the main loop (page 22) via a function called

Refresh_LED (page $$). Refresh_LED simply takes what is in each buffer location and prints it to the actual

display through the SPP port (page 12), but we only update one part of the display each time we get our call.

We take care of ghosting by turning off the cathodes.

Issues

There is an issue of ghosting that I believe comes from a portion of my code that I have used to test a function

that I have not removed, and have not found.

Writing to the buffer

Using a function called LED_Write (page $$) we can write to the display buffer with some organization. The

two arguments are WREG and FSR0. WREG holds the value to be displayed and FSR0 holds both where to

display that value and how to interpret the value in WREG. There are two ways to translate the WREG value:

1) Pre-coded for the display, using constants, we can submit as an argument the values that directly

translate to a character on the display.

2) Translate the value in WREG as a JSCII (page 57), most useful for displaying a number, the first 16

values in the JSCII table are the numbers 0 through A, respectfully order.

The high byte of FSR0 controls this decision. The lower byte of FSR0 controls which part of the display our

value goes. Its bit values correspond to each of the seven areas (Seven Segments, Green, etc).

The display buffer itself can be accessed, but should do write to buffer via LED_Write.

Constants (#DEFINE’s)

We have several groups of definitions

 Hardware reference: cathode and anode addressed

 Anodes: which segments (A through G, decimal point, apostrophe, colon, matrix of LED’s) will light

when a zero is written to them

 Cathodes: which area (one of four seven segments, green LED’s, etc) will light when a zero is written to

them.

 Translate character values (JSCII) 0-9, A-Z, some characters, these are logical combinations of which

segments will light up.

Switches

There are 12 switches on this board, 8 arrow buttons corresponding to 4 seven segment displays and 4 mode

buttons corresponding to their name in Figure 2. We can identify up to 2 switches being pressed at the same

time. If three or more are pressed, we do not get any more info, and only 2 will be reported as being pressed

(the leftmost two, I believe).

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 13 of 64

Updating Values

Sw_State_16 (page $$) and Sw_State_7C (page $$) are updated to report which switches are currently being

pressed at the time UpdateSwitches (page $$) is called. UpdateSwitches is called on a low priority interrupt

(page 9) at a slow enough rate to avoid bouncing. Sw_PState_16/7C holds the previous state of which

switches were pressed. This is used to see once a switch has been released, that it was in fact previously held

down.

The states can then read Sw_State_16/7C and see if those switches are being pressed, if a function reads a

switch, it should clear that corresponding flag (this gives the interrupt control of the ‘refresh rate,’ not whatever

frequency the function in question is being called at).

QuerySwitchesII

While testing for the switches, I found that in each set of 4, every combination of pressing produced a unique

response, see the Table 1 (without masking the response). (Switches 1-4 correspond to 5-8 and 9-C on the

other blocks, respectively).

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 14 of 64

Table 1

Switch(es) Pressed Value Read (Hex)

None F

1 E

2 D

3 B

4 7

1 & 2 C

1 & 3 A

1 & 4 6

2 & 3 9

2 & 4 5

3 & 4 3

1 & 2 & 3 8

1 & 2 & 4 4

1 & 3 & 4 2

2 & 3 & 4 1

All 0

This means that each switch corresponds to a bit in the result (what is read from SPPDATA).

A ‘1’ is read when the switch is not pressed, a 0 0 0 0 is read
 ↑ ↑ ↑ ↑

 when switch 4 3 2 1 is pressed.

My clock design will not have an action attributed to having two switches pressed in the same ‘block’ at the

same time, so I will look only at two switches being pressed in different blocks (except for rightmost block,

there two can be pressed).

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 15 of 64

Identifying how switches have been pressed (in states/functions outside of the interrupt)
The procedure for identifying if a switch has been pressed and released and/or held down:

1) Determine if the switch is currently being held down (test a bit in Sw_State_16 for switches 1-6 or in
Sw_State_7C for switches 7 – C).
a) If it is being pressed:

i) There is a counter, HDCount, that keeps track of how many hundredths of a second have
passed. This should be set once a switch has been pressed, we do so here if needed.

ii) See if that counter has reached zero, if so, then that switch has been held down for the proper
time to classify as being ‚Held Down.‛
(1) If HDCount has reached zero:

(a) Disable counter.
(b) Execute code that should happen after the switch has been held down.

(2) Else exit
b) Else it is not being pressed, we need to see if had been pressed via Sw_PState_16/7C, to see if it

had been held down previously (every time Sw_State_xx gets updated, the old value gets stored in
Sw_PSate_xx).
i) If it had not previously been pressed, then another switch may have been previously pressed,

exit.
ii) If HDCount is not set, then no switch has been pressed, exit.
iii) Else: we had been pressing our switch, which means HDCount has started, and we need to

‘clear’ it. We also do whatever needs to be done when this switch has been ‘Pressed and

Released.’

There is an example on the following page.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 16 of 64

Example switch code, this example will be using switch 9, switch 9 corresponds to button ‘t’ (time):

 BTFSS Sw_State_7C, 9 - 6, 0 ;; see if switch 9 pressed

 BRA State00_release_t ; skip if not pressed

 BTFSC HDCount, 7, 0 ; Set HDCount if it is

 CALL SetHDCount ; negative (not running)

 TSTFSZ HDCount ; if zero, Held down t

 BRA State00_t_undecided ;; ELSE go on with other stuff

 ;; if here t is being held down

 SETF HDCount, 0 ;; disable counter

 ;; Do what you want when t is being held down.

 BRA State00_t_undecided

 State00_release_t:

 ;; if here, see if t was pressed AND not counting HD

 ;; if so: to goto state 01

 BTFSS Sw_PState_7C, 9 - 6, 0 ;; see if switch 9 was pressed

 BRA State00_t_undecided ;; if not ever pressed

 BTFSC HDCount, 7, 0 ;; see if HDCnt disabled

 BRA State00_t_undecided ;; if not ever pressed

 ;; if here, then we had pressed 't' and released it before

 ;; it got to the 'held down' state.

 SETF HDCount, 0 ;; since let go, disable counter

 ;; Do what you want when t has been pressed and released.

 ;; done looking at ‘t’ right now.

 State00_t_undecided:

End of example.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 17 of 64

Rotary Encoder

The rotary encoder is also updated via interrupt (page 9). When RE_intrpt (page $$) is called, it looks at the

rotary encoder info on the SPP port, compares it to the previous state, RE_state (page $$), and then updates

RE_POS (page $$) accordingly.

Clockwise rotations corresponds to RE_POS being incremented, and conversely.

Changing States

As I have said before, states control the unique happenings within our alarm clock. That being said, there are

two ways to change states, the first is to let a time run out, the second is to manually change states based on

user input. Some states employ both of these transitions.

Changing based on the timer

One of the functions of the main loop is to see if it is time to change to a new state, this is done in the function,

Time_Change_State (page $$). Time_Change_State looks at DelayCount (page $$) to see if it is time to

change to a new state (when it is zero). If it is zero, we set our next state to the value kept in DelayState (page

$$), and we disable the counter (make it negative), we also change the DelayState value to zero, the default

state as an error precaution.

Setting up DelayCount and DelayState should be done in the preceding state. That is, if we want to display

‘dAtE’ for 2 seconds, the preceding state needs to set DelayCount to 0xC8 = 200 and DelayState to [current

state] before the transition. All that the current state needs to do is update the display. The current state is

unable to set these delay values (without much trickery), without trickery, we would consistently set the delay

counter, and it would never reach zero. The current states can also leave based on user input, but in doing so,
they should clear the delay registers, otherwise when the time runs out, we will leave the current (next) state
and go to the one specified by DelayState.

Downside: we cannot have two passive states occur after each other. The way around this is to place a third

state between the two passive ones. This third state will set up the delay registers for second passive state,

and then set the current state to that second state

Figure 3

Changing based on user input

We have seen how to interpret the switch state registers (page 12) over time, we uses that code in each state.

For the most part, this code is copied in each state, since it needs to be modified so much, perhaps a series of

macros would be more appropriate, but the overall effect is the same.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 18 of 64

There are three ways for a state to respond to a switch being pressed, the state can respond in two separate

ways to the second to responses below.

1) Do nothing (do not even check its bit values).

2) Wait for it to be held down (held down counter expires)

3) See that it was pressed and released (released before held down counter expirers)

A couple of the states make use of the fact that a switch was held down to get to their state, and they just stay

in their state as long as that switch is being held down (the set current time states do this).

Though most user input is state specific, a couple types of user input occur in multiple states.

Pressing ‘t’ to escape to default mode (from just about ever state)

A function call to QreturnToState00Q (page $$) will check to see if the switch corresponding to the ‘t’ button is

pressed (does not care if released, only pressed). If so, the next state will be state30 (page $$) and the delay

state is set to state00 (page $$), the default state. We go to state30, so we can see the display of the default

state, but we do not register any button presses, since ‘t’ will still be held down. (it is noticed almost instantly,

and microseconds later, we are in a different state, before a human can physically release the button). We are

only in the phony state for a couple hundredths of a second, but it is enough. The user would have to act

pretty quickly to want to press other buttons, believing they are in the default state and find them not working.

Holding down ‘a’ to change to next alarm in list (from states that view the alarm stack (page 27))

A call to QchangeCurrentAlarmQ (page $$) will look to see if the ‘a’ button is being held down, if it is held down

long enough, we update the alarm pointers to view the next alarm in the list, and are sent to the opening state

of the alarm review sequence. If we are adding an alarm, and have not seen ‘SET’ then we through away the

current un-added data.

Holding down ‘d’ to delete the current alarm (from state that view the alarm stack (page 27))

Similar to the previous, except we are pointed to states that prompt the user to confirm that they want to delete

their alarm. The function called is QdeleteAlarmQ.

Responding to the yes or no question

When YesOrNo (page $$) is called, it returns a value saying whether the user has pressed the switches under

the y or the n on the screen (or has no pressed either buttons). This function is different from the ones above

it, in that it also manages the display portion. States that call this should not attempt to display (update the

display buffer) themselves, which ever is done second will be what is actually displayed, but this wastes time.

Using the \//\ to change the current values

This is used to change the values what is currently being displayed, i.e. while viewing minutes and seconds we

press the leftmost up arrow, we will increment the tenth’s place of the minutes. This is done by the complex

function MT_MD_Change_q (page $$) which can change minutes, hours, seconds, and the date; there is also

one that behaves similarly, but only changes the current day of the week, MD_Change_q (page $$).

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 19 of 64

MT_MD_Change_q takes a code as an argument, and based on that code responds differently when certain

switches are pressed. This list of codes in this function’s description (page $$).

Alarms

There can be up to 32 alarms in the processor stored on a stack, starting at Alarm_Base_addr. Each alarm

can ring once or every day (initially we wanted to be able to ring certain days of the week, but this was never

accomplished, but still achievable). Alarm can be set to the minute, and will ring when seconds go from 59 to

00. Alarms ring only when the date they are set to matches the current date (and the time matching too). This

means when setting an alarm, you set the date to the first time you want the alarm to ring. But as you will see

below, we can only store one date per alarm, so how to have that alarm repeat?

There is also a modification stack for the alarms, starting at Alarm_Mod_Base_addr with entries corresponding

to entries in the alarm stack. When an alarm rings, we look at its corresponding modification data to see if we

need to repeat or not, if we need to repeat, we alter the alarm’s date so that it rings the next time (as of now,

this is updating the date to ring the next time). This will be described a little better below.

Exceptional Alarms

We have two exceptional alarms: the daily alarm and the snooze/nap alarm. These are located at the base of

the stack, and each is modified outside of the normal alarm modification routine, in fact, they are not even

viewable with the rest of the alarms (page 25).

The daily alarm’s modification data says that it will ring the next day, but can be turned off through a separate

routine (state33 on page $$) and viewed and altered easily (states 03, 13 pages $$, $$).

The snooze alarm is never seen by the user, and is set based on the current time plus the default snooze time

when the snooze button is hit (while alarm is ringing), or we enter nap mode (page $$). It is not modified after

it rings.

All the other alarms are called ‘special alarms’

Data Structure of an Alarm

4 bytes, each in compact BCD form.

date [high] date [low] hours minutes

Structure of an Alarm Modification

4 bytes in varying forms.

modification
value [high]

modification
value [low]

used as
temporary

storage

modification
code

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 20 of 64

The modification codes determine what the higher two bytes mean:

Modification

Code

Result

0x00 Don’t modify

0x01 Add larger two bytes to the alarm’s
date (will only be 1 for this program)

0x02 Use larger to bytes as flags for which
day of the week to ring next, look at
MD to calculate. (not implemented)

0xFF Alarms has not been written yet.

As you can see, other codes are available for implementation. Right now we just use 0x00, 0x01, and 0xFF.

Alarm and Modification Stack

Using the constant definitions I actually implemented:

 Alarm Stack Alarm Modification Stack

Daily Alarm
0x100

Snooze Alarm
0x104

Special Alarm 1
0x108

…

Special Alarm 30
0x17C

 0x180

Daily Alarm Mod.
0x180

Snooze Alarm Mod.
0x184

Special Alarm Mod. 1
0x188

…

Special Alarm Mod. 30
0x1FC

 0x200

Alarm Menu

Pressing ‘a’ from the default mode will take you to the alarm menu, which gives the user access to the special

alarms by adding one or reviewing the list and default nap and snooze lengths. The alarm menu (states on

pages 26, 27) is a series of passive states that display or prompt user input that takes place in the following

active state. These are really best seen in their state diagrams and explanations, also see the User’s Manual

for an external view of how they work.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 21 of 64

Initialization

After the boot menu occurs, we are tasked with initializing registers and interrupts as well as resetting different

systems. ‘Each’ system has a reset function to call to initialize its respective registers.

Register Initialization

We must set the current state, MASTER_STATE (page $$), to the default, zero. This also turns off the alarm

ringing and makes us not snoozing (see Super States on page 25).

The delay state counter, DelayCount (page $$), needs to be turned off (which means negative).

The delay state register, DelayState (page $$) itself is set to the default state for safety.

The switch counter that indicates if a switch has been held down long enough is turned off (page 15).

Reset Calls

Reset_LED (page $$) sets up the values that allow the display refresh routine to rotate through each display

area. This also prepares the boot up display (Displays ‚JOHN‛).

LowIntReset (page $$) allows us to use the interrupt dispatcher.

Reset_MT sets up the counter to the interrupt to overflow every 60,000 instructions (page 11) and initial

time/date are stored (these are arbitrary, but have some rules, see the Reset_MT code).

resetSwitches (page $$) prepares the switches to be updated on their interrupts

RE_reset (page $$) initializes the rotary encoder state

AlarmReset (page $$) sets up the alarm stack and modification stack pointers (page $$) as well as setting the

modifications of the daily and snooze alarm.

Interrupts

These need to be set after the reset calls are made, since the interrupt routines rely on initialized registers.

These interrupts use the TmrIntrpt_setup macro to initialize themselves, see the code (ENEE 440 – PIC18

Alarm Clock Main.asm) for a in depth explanation.

Timer 0 interrupt (low) is for the switches. Need a low frequency, so we use the 16 bit counter and set the

prescale to 23, which yields ~22.9 Hz. Quick enough so the user cannot press the button too quickly (they

would have to hold it down for less that 40 ms, and on the correct interval) but slow enough to avoid bouncing.

Timer 1 interrupt (high) needs to be slow as well, we choose to its prescale to be 2 (remember the interrupt

code itself alters the counter to get 0.01 second period).

Timer 2 interrupt (low) is for the rotary encoder, we scale it a bit (pre and post) to run quicker then a person

can turn the dial, since we don’t have code to correct for both bit changing between readings.

Timer 3 interrupt (low) was for the sound, but this was never finished.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 22 of 64

Main Loop

I called my main loop IdentidemVicis (Latin). As seen on page 8, the main loop’s tasks are to refresh the

display, react to special alarm circumstances, and pick which state code we will execute. Some code gets

executed every time (refreshing the LED’s and checking to see if the alarm is ringing) everything else happens

within separate states, so the main loop needs to decide which state code to run (including super states (page

25)).

Refreshing the Display

This has already been discussed in the display section on page 12. I tried to do this in an existing interrupt, but

it did not refresh correctly, but this was a quick trial, I may have done it incorrectly. It stays in the main loop for

now.

Managing Alarms

The code in Manage_Alarms (page $$) checks to see if an alarm is ringing for the first time, if so, we set a bit

in MASTER_STATE (page $$) that indicates the alarm is ringing, the code that reports a new alarm ringing

also modifies the ringing alarm so that it will ring (or not ring) the next day. If an alarm is ringing we set the

current state to the default state because we want to see the current time.

We also want to respond to the user, so they can turn off the alarm or enter snooze. We use the lower byte of

DelayState to store rotary encoder position when the alarm rings. If that value changes, we enter the snooze

mode. We also look for the ‘a’ or ‘s’ button to turn off the alarm or enter snooze mode (respectfully). Turning

off the alarm is as simple as deasserting the alarm ringing bit of MASTER_STATE and going to state30 (page

$$) (so we do not register ‘a’ as being pressed in the default state). Entering snooze mode involves calculating

the snooze alarm time and date by adding the current time and date with the default snooze time and storing

this information in the alarm stack; we also need to assert the snoozing bit in MASTER_STATE.

Managing in Snooze Mode

If the snooze bit of MASTER_STATE (page $$) is set, we do not want to execute any of the states’ code. So

we check that bit and skip the snooze code if we are not snoozing. Otherwise we execute Manage_Snooze

(page $$). Entering nap mode also has this effect, but we have set the snooze alarm calculating in the default

nap time in place of the default snooze time, see state04 (page $$).

Manage_Snooze displays the time left of the snoozing session. This is calculated by subtracting the time/date

of the alarm and the current time. We must also respond to the rotary encoder. Turning clockwise means

adding more time to the alarm (and conversely). After adjusting the time, we need to see if the alarm time

agrees with the current time, if so, the user has dialed to zero minutes left. This allows us to exit the snooze

mode, without the alarm ringing (since we will not be interrupted to check to see if the alarm is ringing, it is not

possible for it to accidentally ring unless the time actually expires with 1 minute left as the user is about to dial

down, then we don’t actually have an error, the user might be annoyed though, in fact the user will probably

enter snooze mode right away. There is not a great way to check for this, since we cannot predict what the

user will do).

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 23 of 64

Switched States Based on Delay Timer

As talked about on page 17, if DelayCount (page $$), both high and low bytes, are zero, then we need to

switch states to the one recorded in DelayState (page $$) as well as turning off the DelayCounter.

Going to a State’s Code

SeekState (page $$) contains code to take the value in MASTER_STATE and use it as an offset to the current

program counter to jump to a GOTO command. I used a jump tabled indexed by the MASTER_STATE value.

Calculating the offset PC involves pushing the current PC onto the stack, so we can edit it. We then can shift

MASTER_STATE’s value, and add in the number of instructions that are between the push and the beginning

of the actual code. After this is done, we just need to update the pushed PC value to the current PC value

(RETURN instruction).

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 24 of 64

States

Figure 4, Figure 5 and Figure 6 contain state diagrams that completely outline the special workings of this

processor. All of the code pertaining to the states are in

‚ENEE 440 – PIC08 Alarm Clock Main.asm‛

Explanation

States are stored in MASTER_STATE (page $$). The higher two bits are set if the alarm is currently ringing or

if we are in snooze mode (respectfully). When either is high we execute super state code, code that will

happen despite which actual state we are in. When snoozing, we do not use any of the normal states. When

the alarm is ringing, along with executing special code, we also execute part of the code in state00 (page $$)

so that we may see the current time, but cannot leave this state.

The lower 6 bits are the normal state numbers (seen in the top center of the state bubbles). The super states

are in Figure 4 as well as how to read the state diagram figures.

State List Format

State##

Comes from Summary of which states can get to this one

Goes to Summery of which states can be arrived at from this one

Display

What is on the LED’s. If not stated, the colon ‘:’ is off. If
not states, the green and red LED’s are either off or are
carry their previous value from the previous state

Description
What this state does. Idle states use the delay state
system to get out of their state.

Register Notes
Which registers are or are not effected by this state (when
exception to their general use occurs)

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 25 of 64

Figure 4

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 26 of 64

Figure 5

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 27 of 64

Figure 6

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 28 of 64

State3F – Opening Message

Comes from Reset

Goes to Default state (State00)

Display Opening message

Description Idles until delay count expires

State30 – View Current Time (hh:mm)

Comes from
escaping out of state where we don’t want a pressed
button to execute in the default state (State00)

Goes to Default state (State00)

Display
Current time’s hours and minutes; flash : at 1 Hz
‘CURRENT TIME’ LED is red

Description idles until display count expires

State00 – Default State

Comes from Many places

Goes to

Setting the current time, toggle daily alarm, view daily
alarm, view current date, enter alarm menu, enter nap
mode. States 10, 33, 03, 01, 0E, 04

Display
Current time’s hours and minutes; flash : at 1 Hz
‘CURRENT TIME’ LED is red

Description

Default state, watches four mode buttons for being both
pressed and released and held down. Goes to different
states depending on input.
This is where get when you escape from another state,
and how you start your path to any other state.
When the alarm is ringing, only the display part of the
code is executed.

Register Notes Doesn’t effect HDCount while alarm is ringing

State10 – Set Current Time (hh:mm)

Comes from Viewing the current time (State00) by holding down ‘t’

Goes to Viewing the current time (State00) by releasing ‘t’

Display
Current time’s hours and minutes; flash : at 1 Hz
‘CURRENT TIME’ LED is red; ‘SET TIME’ LED is red

Description
When holding down ‘t’, pressing \//\ will change the
current time’s hours and minutes

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 29 of 64

State01 – View Current Date

Comes from Viewing current time (State00) by pressing ‘t’

Goes to

setting current date, viewing current day of week, default
state (States 11, 21, 00) by holding down ‘t’, pressing ‘t’ or
waiting 8 seconds (respectfully)

Display Current Date; ‘CURRENT TIME’ LED is red

Description Displays the current date

State11 – Set Current Date

Comes from Viewing current date (State01) by holding down ‘t’

Goes to Viewing the current date (State00) by releasing ‘t’

Display
Current date
‘CURRENT TIME’ LED is red; ‘SET TIME’ LED is red

Description
When holding down ‘t’, pressing \//\ will change the
current date

State21 – View Current Day of the Week

Comes from Viewing current date (State01) by pressing ‘t’

Goes to

setting current day of the week, viewing current time in
minutes and seconds, default state (States 02, 31, 00) by
holding down ‘t’, pressing ‘t’ or waiting 8 seconds (respct)

Display Current day of the week; ‘CURRENT TIME’ LED is red

Description Displays the current day of the week

State31 – Set Current Day of the Week

Comes from Viewing current day of the week by holding down ‘t’

Goes to Viewing the current day of the week by releasing ‘t’

Display
Current day of the week
‘CURRENT TIME’ LED is red; ‘SET TIME’ LED is red

Description
When holding down ‘t’, pressing \//\ will change the
current day of the week

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 30 of 64

State02 – View Current Time (mm:ss)

Comes from Viewing current day of the week (State21) by pressing ‘t’

Goes to

setting current day of the time in minutes and seconds,
viewing current time in hours and minutes, default state
(States 12, 00, 00) by holding down ‘t’, pressing ‘t’ or
waiting 8 seconds (respectfully)

Display
Current Time’s Minutes and Seconds
‘CURRENT TIME’ LED is red

Description Displays the current time’s minutes and seconds

State12 – Set Current Time (mm:ss)

Comes from
Viewing current time’s minutes and seconds (State02) by
holding down ‘t’

Goes to
Viewing the current time’s minutes and seconds by
releasing ‘t’

Display
Current Time’s Minutes and Seconds; flash : at 5 Hz
 ‘CURRENT TIME’ LED is red; ‘SET TIME’ LED is red

Description
When holding down ‘t’, pressing \//\ will change the
current time’s minutes and seconds

State33 – Toggle Daily Alarm On/Off

Comes from Default state (State00) by pressing and releasing ‘s’

Goes to Delay to default state (State30)

Display -

Description

Toggles the daily alarm on/off. Turns on by changing its
date to the current date if alarm’s time > current time or
changing its date to the next day of alarm’s time < current
time. To turn it off, just put alarm’s date to 0000.
Only here for one cycle

State04 – Initiate Nap (Snooze) Mode

Comes from Default state (State00) by holding down ‘s’

Goes to While snooze (nap) is active, we don’t go to states

Display
This state doesn’t display anything, the snooze super
state will display the time left in the snooze session

Description

Starts snooze session by turns on the snooze mode as
well as setting the snooze/nap alarm to current time/date
+ default nap time.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 31 of 64

State03 – View Daily Alarm

Comes from Default state (State00) by pressing ‘d’

Goes to

setting daily alarm’s hours and minutes or the default
state (States 13, 00) by holding down ‘d’, pressing ‘t’ or
waiting 8 seconds

Display
Daily alarm’s hours and minutes; flash : at 1 Hz
‘REVIEW/EDIT’ LED is red

Description View the daily alarm’s time

State13 – Set Daily Alarm

Comes from Viewing daily alarm’s time (State03) by holding down ‘d’

Goes to Viewing the daily alarm’s time by releasing ‘t’

Display
Daily Alarm’s time: hours and minutes; flash : at 1 Hz
 ‘REVIEW/EDIT’ LED is red; ‘SET ALARM’ LED is red

Description
When holding down ‘d’, pressing \//\ will change the daily
alarm’s time

State0E – Alarm Menu

Comes from Default state (State00)

Goes to

Review Alarms, Add Alarms, Snooze set, Nap set, or
default state (states 06, 16, 26, 36, 00) by pressing the
corresponding /\\/ or ‘t’

Display ‚r A S n‛ = (see above cell)

Description

Presents a menu to enter alarm menu system, make
menu choices by pressing the arrow underneath
whichever 7seg matches.

State06 – Display ‘Review’

Comes from Alarm menu (State0E)

Goes to Set ‘time’ delay (State28)

Display ‚ReVA‛ = review alarm

Description Idle while displaying message

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 32 of 64

State28 – Prepare to View Special Alarms

Comes from

Review Alarm message, alarm set confirmation, or
viewing alarms frequency (states 06, 3B, 19/39) by
waiting or holding down ‘s’
Or by any o the view/set special alarm states by holding
down ‘a’

Goes to
If there are no special alarms: display ‚none‛ (State27)
Else: display ‚time‛ then display alarm’s time (State17)

Display -

Description

Figure out if there are special alarms in the stack, if so,
continue to display the time of the current special alarm
Only here for one cycle

Register Notes Edits FSR1 and FSR2 within rules specified

State27 – Display ‘None’

Comes from State28

Goes to Default state (State00)

Display ‚nonE‛

Description Idle while displaying message

State16 – Display ‘Add Alarm’

Comes from Alarm menu (State0E)

Goes to Set ‘time’ delay and add empty alarm (State38)

Display ‚AddA‛ = add alarm

Description Idle while displaying message

State38 – Prepare to Add a Special Alarm

Comes from Review Alarm message by waiting or holding down ‘s’

Goes to
If there are 30 special alarms: display ‚full‛ (State37)
Else: display ‚time‛ then display alarm’s time (State17)

Display -

Description

Figure out if there are special alarms in the stack, if so,
continue to display the time of the current special alarm
Only here for one cycle

Register Notes Edits FSR1 and FSR2 within rules specified

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 33 of 64

State37 – Display ‘Full’

Comes from State38

Goes to Default state (State00)

Display ‚FULL‛

Description Idle while displaying message

State17 – Display ‘Time’

Comes from Set time delay with/without adding an empty alarm

Goes to Showing/setting current alarm’s time (State07)

Display
‚tiM‛ = time
 ‘REVIEW/EDIT’ LED is green

Description Idle while displaying message

State07 – Edit Current Alarm’s Time

Comes from Time display (State17) by waiting or holding down ‘s’

Goes to Displaying date (State18) by holding down ‘s’

Display
Current alarm’s time (hours and minutes) : flashes at 1 Hz
 ‘REVIEW/EDIT’ LED is green; ‘SET ALARM’ LED green

Description
Change the current alarm’s time by pressing and
releasing /\\/

Register Notes Edits FSR1 and FSR2 within rules specified

State 18 – Display ‘Date’

Comes from Viewing/Setting Current Alarm’s time (State07)

Goes to Viewing/Setting Current Alarm’s date (State08)

Display
‚dAtE‛ = date
 ‘REVIEW/EDIT’ LED is green

Description Idle while displaying message

State08 – Edit Current Alarm’s Date

Comes from Date display (State18) by waiting or holding down ‘s’

Goes to Which frequency state (State09) by holding down ‘s’

Display
Current alarm’s date
 ‘REVIEW/EDIT’ LED is green; ‘SET ALARM’ LED green

Description
Change the current alarm’s date by pressing and
releasing /\\/. This is when the next time the alarm will

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 34 of 64

ring (can not ring for several days, even if alarm is set to
ring every day, once it rings, it will ring every day)

Register Notes Edits FSR1 and FSR2 within rules specified

State09 – Which Frequency State to Go To

Comes from Viewing Alarm’s Date (State08) by holding down ‘s’

Goes to States 19, 39 (29) or 0A depending

Display -

Description

Look’s at the current alarm’s modification data in the
modification stack, based on that value, go to:

0x00 once state19
0x01 everyday state39
0x02 certain days of the week (unimplemented)
0xFF not set yet state0A

Register Notes Edits FSR1 and FSR2 within rules specified

State19 – Display ‘Once’

Comes from State09

Goes to State28 (Start cycle over again)

Display
‚oncE‛ = once
 ‘REVIEW/EDIT’ LED is green

Description Idle while displaying message

State39 – Display/Prompt ‘Every Day’

Comes from State09

Goes to State28 (Start cycle over again)

Display
‚EdaY‛ = Every Day/Every Day?
 ‘REVIEW/EDIT’ LED is green / ‘SET ALARM’ LED green

Description Idle while displaying message

State0A – Prompt ‘Repeat’

Comes from State09

Goes to Yes or No (State1A)

Display
‚rEPt‛ = Repeat?
 ‘REVIEW/EDIT’ LED is green; ‘SET ALARM’ LED green

Description Idle while displaying message

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 35 of 64

State1A – Yes or No (repeat)

Comes from Repeat? (State0A)

Goes to Display Set (State3B) or Prompt Every Day (State39)

Display
‚Y n ‛ = Yes or No
 ‘REVIEW/EDIT’ LED is green; ‘SET ALARM’ LED green

Description

If user pushed \//\ for yes, continue to state 39, then 3A
If user pushed \//\ for no, add 4 to stack pointers (FSR1,
FSR2), effectively adding this alarm to the stack

Register Notes Edits FSR1 and FSR2 within rules specified

State3A – Yes or No (Every Day)

Comes from Every Day? (State39)

Goes to Display Set (State3B) or Display Can’t (State2A)

Display
‚Y n ‛ = Yes or No
 ‘REVIEW/EDIT’ LED is green; ‘SET ALARM’ LED green

Description

If user pushed \//\ for no, continue to state 2A, since we
cannot have an alarm that both repeats AND does not
ring every day, originally we would continue to state 0B
where we would start the process of prompting which
days of the week we want this alarm to ring.
If user pushed \//\ for yes, add 4 to stack pointers (FSR1,
FSR2), effectively adding this alarm to the stack

Register Notes Edits FSR1 and FSR2 within rules specified

State2A – Display ‘Can’t’

Comes from State3A

Goes to Prompt Repeat (State0A)

Display
‚cAnt‛ = can’t
 ‘REVIEW/EDIT’ LED is green; ‘SET ALARM’ LED green

Description

Idle while displaying message, we then ask about
repeating again until the user repeats every day or not at
all (or exits before this alarm is saved)

State3B – Display ‘Set’

Comes from No/Yes (State 1A, 3A) respectfully (0B if implemented)

Goes to Start display of alarms beginning (State28)

Display ‚SEt ‛ = set; ‘REVIEW/EDIT’ LED is green

Description Idle while displaying message

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 36 of 64

State0D – Prompt ‘Delete’

Comes from
Any of the special alarm viewing/setting states by holding
down ‘d’

Goes to
Yes or No (State1D)
 ‘REVIEW/EDIT’ LED is green; ‘SET ALARM’ LED green

Display ‚DEL ‛ = Delete?

Description Idle while displaying message

State1D – Yes or No (Delete)

Comes from Prompt ‘Delete’

Goes to
Beginning of viewing/setting special alarms or back to the
state which existed previous to arriving at State0D

Display
‚Y n ‛ = yes or no
 ‘REVIEW/EDIT’ LED is green; ‘SET ALARM’ LED green

Description

If user says yes, then delete the current alarm by moving
everything else in the stack down one alarm space and
decrementing the alarm points by 4, then display ‘erased’
If user says no, go back to previous state (held in
temporary portion of alarm’s modification entry, the 2nd
lowest byte)

Register Notes Edits FSR1 and FSR2 within rules specified

State2D – Display ‘Erased’

Comes from Yes or No (State1D)

Goes to Beginning of reviewing alarms (State28)

Display
‚ErAS‛ = Erased
 ‘REVIEW/EDIT’ LED is green; ‘SET ALARM’ LED green

Description Idle while displaying message

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 37 of 64

State26 – Display ‘Snooze Set’

Comes from Alarm Menu (State0E)

Goes to Set default snooze length (State0C)

Display ‚SnoS‛ = Snooze Set (default)

Description Idle while displaying message

State0C – Set Default Snooze Length

Comes from Display ‘snooze set’ by waiting

Goes to Default state by pressing ‘t’ or ‘s’

Display Default snooze length, hours and minutes

Description
Use \//\ to adjust default snooze length, automatically
saved

State36 – Display ‚Nap Set‛

Comes from Alarm Menu (State0E)

Goes to Set default nap length (State1C)

Display ‚nAPS‛ = Nap Set (default)

Description Idle while displaying message

State1C State0C – Set Default Nap/Timer Length

Comes from Display ‘nap set’ by waiting

Goes to Default state by pressing ‘t’ or ‘s’

Display Default nap/timer length, hours and minutes

Description Use \//\ to adjust default nap length, automatically saved

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 38 of 64

Hardware

Input and Output

The input and output of this device used the SPP ports of the PIC. On the other side of the PIC there are eight

external registers that hold the output values. Writing an address (writing to SPPEPS) will pick which register

we want to read or write from. Reading from the SPPDATA for the switches/rotary encoder is not filtered

through a register, but we can think of a register external that we get our data from.

We can see how to write an address, write data, and then read data (from Microchip) in Figure 7.

Figure 7

When reading and writing data, we need to confirm that our transmission is complete. This is done by

checking the fourth bit of SPPEPS until it is clear. Writing addresses, data and reading data is done in two

macros: MOVWSPP, MOVSPPW (use MOVWSPP for both address and data) see pages $$, $$.

Here are the steps to writing to the 7seg (set both anodes and cathodes):
MOVLW [code to which area to write to] ;; all 1’s except area we want lit

MOVWSPP ANODES (a literal) ;; 0x02

MOVLW [which lights are on/off, a letter/number] ;; 1 = off, 0 = on

MOVWSPP CATHODES (a literal) ;; 0x01

Here are the steps to read from the switches
MOVLW [code to which switches to allow] ;; 0 for allow

MOVWSPP SWITCHES (a literal) ;; 0x00

MOVSPPW SWITCHES (a literal) ;; W holds 0 for switches pressed

;; you will need to mask of other bits

Note, these do not address the issue of ghosting, the rotary encoder is similar, but you do not need to write to

the address first (its address is the same as SWITHCES) see the code comments for why which bits are which.

Clock

Our processor is driven by a 40 MHz crystal, but is divided/multiplied to 48 MHz for the speed of the processor.

Actual instructions take this down by a factor of four.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 39 of 64

Non-Obvious Methods

This section is to address the not-so-apparent methods to my code.

State Jump Table

In ‚ENEE 440 - PIC18 Alarm Clock Main.asm‛ line 1064. I wanted a constant time function to get to a certain

state. We could compare to zero, subtract 1, compare to zero… (can do the same thing with XOR) but the last

state on the list would not be reached for many step. What I did was add the state value to the PC (see page

23 for more detail about this) and at the address the PC ended up at, would be a GOTO to the correct state.

The downside to this, is that we take up program memory with GOTO’s that will never be reached (I have

pointed them to the default state in case of error).

Automatically Switching State

By setting up a counter that decrements every 1/100 of a second, we have pretty good and easy control of

switching states every time main loop is called without taking too much extra time (see page 17 for more

detail). The actual structure yields checking one register to see if it is negative to tell if the counter is active or

not.

Responding to Pressing of a Switch

This is fairly well documented in the Switches section on page 12. But without too much code we can respond

to a switch being pressed, pressed and released, or held down. We have a ‘hold down limit’ that allows us to

easily change how long it takes to consider a switch ‘held down.’ (from zero to 1.27 seconds, though this

needed to be changed to 0 to 32767 for the quicker demo file, since 1.27 seconds passed hundreds of times

quicker; thus requiring an extra register).

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 40 of 64

Appendices

Appendix A: Acronyms and Abbreviations

Acronym/

Abbreviation

Meaning/ Translation

7Seg Seven Segment (Display)

BCD Binary Coded Decimal

JSCII John’s Standard Code for Information Interchange

LED Light Emitting Diode

RE Rotary Encoder

SW Switch

hh two nibbles of hours in BCD format

mm two nibbles of minutes in BCD format

ss two nibbles of seconds in BCD format

cc two nibbles of hundredths of seconds in BCD format

MT MASTER_TIME

Md MASTER_DATE

MD MASTER_DAY

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 41 of 64

Appendix B: Global and Important Variables

I used 45 out of the 96 allowed UDATA registers (the first 0x59 slots of ram). In the code there are some

UDATA labels that are old (especially in the switch file). Besides the temporary ones, the ‘in use’ ones are in

tables below.

MASTER_STATE

8-bits

A S/N State

Holds the current state. A = 1 when alarm is
ringing, S/N = 1 when in snooze/nap mode.

SET_MS (macro), Main Loop, most states

ENEE 440 - PIC18 Alarm Clock Main.asm

MASTER_TIME

32-bits

hh mm ss cc

Keeps track of current time in hours, minutes,
seconds and 1/100 of a second

Set_Snooze, Alarm_Ringing, Tick_MT, others

ENEE 440 - PIC18 Alarm Clock MT.asm

MASTER_DATE

16-bits

4 digit date in compact BCD form

Keeps the current date

Set_Snooze, Alarm_Ringing, Tick_MT, others

ENEE 440 - PIC18 Alarm Clock MT.asm

MASTER_DAY

8-bits

- s F R W T M S

Holds the day of the week, only one bit set at
once, rotate left to get next day of the week, if
negative, rotate again.

States 21 and 31

ENEE 440 - PIC18 Alarm Clock MT.asm

In_Service_L

8-bits

high low

Bits tell which sub-priority, low interrupts are in
service, highest sub-priority in bit 7.
 1 = in service

 0 = not in service

LowInt

ENEE 440 - PIC18 Alarm Clock Low Int.asm

Start_Srvs_L

8-bits

high low

Bits tell which low sub-priority interrupt needs
to be started. Highest sub-priority is bit 7
 1 = needs service
 0 = does not need service

LowInt

ENEE 440 - PIC18 Alarm Clock Low Int.asm

DelayCount

16-bits

2’s compliment number

Holds the number of 0.01 seconds left until we
need to change to the state in DelayState. If
negative, it means it should not be
decremented. Delay range: [10 ms, 5.46 min]

Time_Change_State, Many states

ENEE 440 - PIC18 Alarm Clock Main.asm

DelayState

8-bits

- - state
Hold the number of a state, when DelayCount
becomes zero, we should set
MASTER_STATE to this register’s value

Time_Change_State, Many states

ENEE 440 - PIC18 Alarm Clock Main.asm

HDCount

8-bits

2’s compliment number

Similar to DelayCount, how many 0.01
seconds left until a switch has been ‘held
down’ as opposed to pressed and released.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 42 of 64

When negative, it is disabled.

Many States

ENEE 440 - PIC18 Alarm Clock Main.asm

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 43 of 64

Alarm_SP

16-bits

RAM address

Keeps track of the top of the alarm stack

AlarmRinging_q, AddAlarm, AddAlarmSpace,
ChangeCurAlarm, DeleteAlarm, Update-
ALARM_STATE, qSpecial_Alarm_exist_q

ENEE 440 - PIC18 Alarm Clock Alarms.asm

Alarm_mod_SP

16-bits

RAM address

Keeps track of the top of the alarm stack

AddAlarm, AddAlarmSpace, ChangeCurAlarm,
DeleteAlarm, UpdateALARM_STATE,
qSpecial_Alarm_exist_q, AlarmReset

ENEE 440 - PIC18 Alarm Clock Alarms.asm

snooze_duration

8-bits

hh mm

Holds the default length of snoozing after an
alarm rings in hours and minutes (compact
BCD)

AlarmReset, Set_Snooze

ENEE 440 - PIC18 Alarm Clock Alarms.asm

nap_duration

8-bits

hh mm

Holds the default length of naps in hours and
minutes (compact BCD)

AlarmReset, Set_Nap

ENEE 440 - PIC18 Alarm Clock Alarms.asm

Display_Buf

64-bits

LM
7Seg

LC
7Seg

: ’
RC

7Seg
RM

7Seg
GRN
LED

-
RED
LED

 Contains direct translation of what should be
 displayed on the LED’s.

 Refresh_LED, LED_Write

 ENEE 440 - PIC18 Alarm Clock Main.asm

LED_cnt

8-bits

1 1 1 0 1 1 1 1
Used to both drive the Anodes and also pick
which byte of Display_Buf to refresh to the
screen (there are 8 pairs). What is shown
above is the contents at one point in time, next
time the function is called, that will be rotated.

Refresh_LED

ENEE 440 - PIC18 Alarm Clock LED.asm

RE_POS

16-bits

2’s Compliment

Holds the position of the rotary encoder,
rotating clockwise corresponds to increasing
this number. This number will be incremented
by 96 for every full revolution.

RE_intrpt, snooze_manage

ENEE 440 - PIC18 Alarm Clock RE.asm

RE_state

8-bits

a b - - - - - -

Previous state of the rotary encoder.
Compare to current state to see if a change,
increase or decrease RE_POS.
 01 -> 00 : clockwise
 01 -> 11 : counterclockwise
 11 -> 01 : clockwise
 11 -> 10 : counterclockwise
just half of the changes possible.

RE_intrpt

ENEE 440 - PIC18 Alarm Clock RE.asm

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 44 of 64

SwTmpCmp

8-bits

Used for a variety of switch tasks, from holding
values to compare to just temporary storage.

QuerySwitchesII, UpdateSwitches

ENEE 440 - PIC18 Alarm Clock SW.asm

Sw_State_16

8-bits

- P/n P/n P/n P/n P/n P/n -

Updated on an interrupt to keep the bits
consistent with which switches are currently
being pressed. Bit 1 is switch 1… bit 6 is
switch 6. Accurate to two switches being
pressed at once.
 1 = Currently Pressed
 0 = Currently Depressed
Once a switch is read by a function, that
function may (and should) clear that bit to say
that the switch press has been registered.

UpdateSwitches, whoever need to know which
switches are currently pressed

ENEE 440 - PIC18 Alarm Clock SW.asm

Sw_State_7C

8-bits

- P/n P/n P/n P/n P/n P/n -

Same as Sw_State_16, except bit 1 is switch
7… bit 6 is switch C (add 6 to the bit values to
get the corresponding switch value)

UpdateSwitches, whoever need to know which
switches are currently pressed

ENEE 440 - PIC18 Alarm Clock SW.asm

Sw_PState_16

8-bits

- P/n P/n P/n P/n P/n P/n -

Before Sw_State_16 is updated, it should be
copied here so functions can see which
switches were recently released.

UpdateSwitches, whoever need to know which
switches were pressed previously

ENEE 440 - PIC18 Alarm Clock SW.asm

Sw_PState_7C

8-bits

- P/n P/n P/n P/n P/n P/n -

Before Sw_State_7C is updated, it should be
copied here so functions can see which
switches were recently released.

UpdateSwitches, whoever need to know which
switches were pressed previously

ENEE 440 - PIC18 Alarm Clock SW.asm

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 45 of 64

Appendix C: Function API

Main

Arguments

Return Value

Description Contains main loop, initiates registers and interrupts

Special Notes

Variables Used MASTER_STATE

Source File ENEE 440 - PIC18 Alarm Clock Main.asm

Manage_Alarms

Arguments

Return Value

Description Checks to see if an alarm is ringing and responds accordingly if
one is ringing (includes responding to user input to turn it off)

Special Notes Self serving, externally, only alters MASTER_STATE

Variables Used MASTER_STATE (MASTER_TIME/DATE alarm stack)

Source File ENEE 440 - PIC18 Alarm Clock Main.asm

Manage_Snooze

Arguments

Return Value

Description Displays the time left of your snooze session (the difference
between the current time and the snooze alarm’s time),
responds to the rotary encoder by updating the snooze alarm,
as well as exiting if nap is ended by rotary encoder.

Special Notes Regular states not arrived at while snooze bit is set

Variables Used MASTER_STATE, alarm stack (MASTER_TIME/DATE)

Source File ENEE 440 - PIC18 Alarm Clock Main.asm

Time_Change_State

Arguments

Return Value

Description Changes MASTER_STATE to DelayState when DelayCount is
zero, reset DelayCount

Special Notes

Variables Used MASTER_STATE, DelayCount (DelayState)

Source File ENEE 440 - PIC18 Alarm Clock Main.asm

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 46 of 64

QreturnToState00Q

Arguments

Return Value

Description Looks at the switched currently pressed, if ‘t’ is pressed, then
go to state30, set up delay state to take you to the default state
in 0.2 seconds

Special Notes Go to state30 first so pressing ‘t’ not carried over to State00

Variables Used Sw_State_7C, MASTER_STATE, delayCount, delayState

Source File ENEE 440 - PIC18 Alarm Clock Main.asm

QdeleteAlarmQ

Arguments

Return Value

Description Similar to QreturnToState00Q, except looks at ‘d’ to see if it
has been held down. If so, go to state0D on a timer, then to
state1D.

Special Notes Should only be called from Review Alarm states (states in side
the larger circle in Figure 6.

Variables Used Sw_State_7C, MASTER_STATE, delayCount, delayState

Source File ENEE 440 - PIC18 Alarm Clock Main.asm

QchangeCurrentAlarmQ

Arguments

Return Value

Description Same as QdeleteAlarmQ, but change FSR1, FSR2 to point to
the next alarm in the stack (or first if we go over)

Special Notes Should only be called from Review Alarm states (states in side
the larger circle in Figure 6.

Variables Used Sw_State_7C, MASTER_STATE, delayCount, delayState

Source File ENEE 440 - PIC18 Alarm Clock Main.asm

YesOrNo

Arguments

Return Value WREG: -1 nothing pressed, 0 = no selected, 1 = yes selected

Description Displays yes or no. Calls LED_Write as a subroutine

Special Notes Calling state should not try to write to the LED buffer

Variables Used Sw_State_16

Source File ENEE 440 - PIC18 Alarm Clock Main.asm

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 47 of 64

DisplayTest_A

Arguments

Return Value

Description Displays a variety of items, (uncomment what you want
displayed) Calls LED_Write

Special Notes For testing only (not used in final product)

Variables Used

Source File ENEE 440 - PIC18 Alarm Clock Main.asm

DisplayTest_B

Arguments

Return Value

Description Displays which state you are in when called. Calls LED_Write

Special Notes For testing only (not used in final product)

Variables Used

Source File ENEE 440 - PIC18 Alarm Clock Main.asm

SetHDCount

Arguments HOLDDOWNLIMIT

Return Value

Description Checks to see that HOLDDOWNLIMIT is in the bounds of
HDCount. HDCount = MIN(HOLDDOWNLIMIT, 0x7F)

Special Notes

Variables Used HDCount

Source File ENEE 440 - PIC18 Alarm Clock Main.asm

AlarmRinging_q

Arguments

Return Value WREG = -1 if not ringing, 0 if ringing

Description In the interval MT[sec] = 00, MT[hun] < 10, check for alarms:
alarm date = Md, alarm time = MT[hh:mm], if so return positive

Special Notes Keeps FSR0 the way it found it

Variables Used MASTER_DATE, MASTER_TIME, FSR0

Source File ENEE 440 - PIC18 Alarm Clock Alarms.asm

silenceAlarm

Arguments WREG lower byte of pointer to alarm stack

Return Value

Description Look at alarm pointed to by WREG’s modification code, and
apply it to the alarm (alter or not the alarm’s date in the stack).

Special Notes

Variables Used FSR0

Source File ENEE 440 - PIC18 Alarm Clock Alarms.asm

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 48 of 64

AddAlarm

Arguments

Return Value

Description Creates an ‘empty’ alarm on the stack. Does not alter the
stack pointers though (this way we do not have to save the
alarm until it is ‘set’) Modification data set up so that the code
is 0xFF (we do not know if we repeat or not).

Special Notes Assumes caller function has checked to see that the stack is
NOT full.

Variables Used Alarm_SP, Alarm_mod_SP, MASTER_DATE, MASTER_TIME

Source File ENEE 440 - PIC18 Alarm Clock Alarms.asm

AddAlarmSpace

Arguments

Return Value

Description Changes the stack pointers to add an alarm onto the stack (in
the way I have used it, I add the alarm first (stack does not
recognized it yet) and then I update the stack pointer when I
print ‘SET’ on the display.

Special Notes Assumes caller function has checked to see that the stack is
NOT full.

Variables Used

Source File ENEE 440 - PIC18 Alarm Clock Alarms.asm

ChangeCurAlarm

Arguments

Return Value

Description Changes the stack pointers, FSR1 and FSR2 to point to the
next alarm in the stack (or rotate around)

Special Notes Should only be called from Review Alarm states (states in side
the larger circle in Figure 6.

Variables Used

Source File ENEE 440 - PIC18 Alarm Clock Alarms.asm

DeleteAlarm

Arguments

Return Value

Description Deletes current alarm pointed to by FSR1 (and moves the rest
of the alarms in the stack down one space)

Special Notes Should only be called from Review Alarm states (states in side
the larger circle in Figure 6.

Variables Used FSR1, FSR2

Source File ENEE 440 - PIC18 Alarm Clock Alarms.asm

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 49 of 64

qSpecial_Alarm_exist_q

Arguments

Return Value WREG: -1 not special alarms exits, 0 some exist

Description Checks the alarm stack pointers to see if an alarm exists

Special Notes

Variables Used

Source File ENEE 440 - PIC18 Alarm Clock Alarms.asm

qSpecial_Alarm_full_q

Arguments

Return Value WREG: -1 stack NOT full, 0 stack is full

Description Similar to last, sees if the stack is full or not.

Special Notes

Variables Used

Source File ENEE 440 - PIC18 Alarm Clock Alarms.asm

AlarmReset

Arguments

Return Value

Description Sets up the alarms (mainly the stack and default values for the
daily and snooze alarm as well as their modifications).

Special Notes

Variables Used Alarm_SP, Alarm_mod_SP, snooze_duration, nap_duration

Source File ENEE 440 - PIC18 Alarm Clock Alarms.asm

Refresh_LED

Arguments

Return Value

Description Copies values in Display_Buf to display (one area at time) also
checks to see if the daily alarm will ring (looking at
ALARM_STATE, not figuring it out here)

Special Notes

Variables Used ALARM_STATE, LED_cnt, Display_Buf

Source File ENEE 440 - PIC18 Alarm Clock LED.asm

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 50 of 64

Reset_LED

Arguments

Return Value

Description Sets up default values for the LED displays as well as the
welcome screen.

Special Notes

Variables Used LED_cnt, Display_Buf

Source File ENEE 440 - PIC18 Alarm Clock LED.asm

BCD_to_7SEG

Arguments WREG (JSCII offset code)

Return Value WREG (translated code)

Description Uses WREG as an offset to the JSCII lookup table

Special Notes Does not check to see that WREG is within table limits

Variables Used TBLPTRL/H/U

Source File ENEE 440 - PIC18 Alarm Clock LED.asm

LED_Write

Arguments WREG, FSR0

Return Value

Description Writes values to the display buffer. Value is in WREG, if
FSR0H is 1, then translate this value using BCD_to_7SEG,
else just write directly. FSR0L indicates which parts of the
display buffer should be written to.

Special Notes

Variables Used

Source File ENEE 440 - PIC18 Alarm Clock LED.asm

Tick_MT

Arguments

Return Value

Description Called from interrupt, should be called every 1/100 of a second,
works with Timer 1’s counter to accomplish this. Increments
MT, Md and MD by 1/100 of a second, also decrements
DelayCount and HDCount if they are not turned off (>0). Takes
care of flashing the : at 1 or 5 Hz depending on the state. Also
flashed the LED if the alarm is currently ringing.

Special Notes MT, Md, MD, DelayCount, HDCount

Variables Used

Source File ENEE 440 - PIC18 Alarm Clock MT.asm

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 51 of 64

Add_MT

Arguments WREG (in 1/100 of a second, compact BCD form)

Return Value

Description MT = MT + WREG

Special Notes

Variables Used

Source File ENEE 440 - PIC18 Alarm Clock MT.asm

Reset_MT

Arguments

Return Value

Description Initializes registers, gives initial time, should not be on the first
day (Md != 0000).

Special Notes

Variables Used MASTER_TIME, MASTER_DATE, MASTER_DAY, TMR1

Source File ENEE 440 - PIC18 Alarm Clock MT.asm

Display_[day of the week]

Arguments

Return Value

Description Writes the day of the week to Display_Buf

Special Notes [day of the week] = Sun, Mon, Tue, Wed, Thu, Fri, or Sat

Variables Used

Source File ENEE 440 - PIC18 Alarm Clock MT.asm

MT_MD_Change_q

Arguments FSR0

Return Value

Description Uses the arrow keys to update certain registers, treating them
like hours, dates, minutes (seconds). Based on FSR0 we can
alter many different registers:
 1 MT[mm::ss]
 2 MT[hh:mm]
 4 Md[dddd]
 8 Daily Alarm[hhmm]
 9 Snooze defaults [hh:mm]
 A nap defaults [hh:mm]
 B Current alarm [hh:mm]
 C Current alarm [dddd]

Special Notes A little complicated, but it works.

Variables Used

Source File ENEE 440 - PIC18 Alarm Clock MT.asm

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 52 of 64

MD_Change_q

Arguments

Return Value

Description Similar to the previous function, but only changes the day of
the week, (the current day of the week).

Special Notes

Variables Used

Source File ENEE 440 - PIC18 Alarm Clock MT.asm

MTMD_dq_IncDec_Date_High

Arguments WREG (compact BCD form)

Return Value

Description Register pointed to by FSR0 treated like the higher byte of a
date. FSR0* = WREG + FSR0*

Special Notes WREG = 1 0x01
 10 0x10
 -1 0x99
 -10 0x90

Variables Used FSR0L

Source File ENEE 440 - PIC18 Alarm Clock MT.asm

MTMD_dq_IncDec_Date_Low

Arguments WREG (compact BCD form)

Return Value

Description Register pointed to by FSR0 treated like the lower byte of a
date. FSR0* = WREG + FSR0*

Special Notes See special notes in MTMD_dq_IncDec_Date_High

Variables Used FSR0L

Source File ENEE 440 - PIC18 Alarm Clock MT.asm

MTMD_dq_IncDec_Hour

Arguments WREG (compact BCD form)

Return Value

Description Register pointed to by FSR0 treated like in hour format.
FSR0* = WREG + FSR0*

Special Notes See special notes in MTMD_dq_IncDec_Date_High

Variables Used FSR0L

Source File ENEE 440 - PIC18 Alarm Clock MT.asm

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 53 of 64

MTMD_dq_IncDec_MnSc

Arguments WREG (compact BCD form)

Return Value

Description Register pointed to by FSR0 treated like a minute or a second
(both behave the same) FSR0* = WREG + FSR0*

Special Notes See special notes in MTMD_dq_IncDec_Date_High

Variables Used FSR0L

Source File ENEE 440 - PIC18 Alarm Clock MT.asm

RE_intrpt

Arguments

Return Value

Description Compares the current state of the rotary encoder with the
previous (recorded) state. Adjusts RE_POS higher if rotated
clockwise, lower if counterclockwise. See page 17.

Special Notes Should call on interrupt faster then a person can spin the dial.

Variables Used RE_state, RE_POS

Source File ENEE 440 - PIC18 Alarm Clock RE.asm

RE_reset

Arguments

Return Value

Description Clears Rotary encoder registers

Special Notes

Variables Used RE_state, RE_POS

Source File ENEE 440 - PIC18 Alarm Clock RE.asm

QuerySwitchesII

Arguments

Return Value WREG (nibble = no switch pressed, nibble not zero means that
switch is pressed)

Description Checks the SPP port to see which switches are pressed. First
checks to see if any are pressed, if so we allow the rightmost
four switches to register responses, this response is unique for
each combination of those four switches being pressed, using
this we can see which switches are pressed. Continue to next
four switches. We stop when two switches are identified (even
if there are more pressed). The rightmost ones are identified
first.

Special Notes Uses FSR0, identifies up to two switches being pressed at
once.

Variables Used SwTmpCmp,

Source File ENEE 440 - PIC18 Alarm Clock SW.asm

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 54 of 64

UpdateSwitches

Arguments

Return Value

Description Calls QuerySwitchesII, updates Sw_State_16, Sw_PState_16,
Sw_State_7C, Sw_PState_7C with current (previous) switch
states.

Special Notes Should call from interrupt slow then the period of bouncing.

Variables Used ENEE 440 - PIC18 Alarm Clock SW.asm

Source File ENEE 440 - PIC18 Alarm Clock SW.asm

resetSwictches

Arguments

Return Value

Description Looking back, this is not needed, since we don’t use US_pot..,
or Sw_State_HD/PR anymore.

Special Notes (Those variables were part of a failed attempt to monitor the
switches that would have taken most of the switch
management out of the individual states).

Variables Used

Source File ENEE 440 - PIC18 Alarm Clock SW.asm

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 55 of 64

Appendix D: Macros

MOVLW

Arguments
literal

file register (8-bit address)

Result REG = literal

SET_MS

Arguments
newState

Result MASTER_STATE[5..0] = newState[5..0]

SET_DS

Arguments

nextState

delayTime (16 bytes, between 0 and 32767)
 time is in 1/100 of a second

Result
DelayState = nextState
DelayCount = delayTime

CLR_DS

Result
DelayState is default state
DelayCount is disabled (DelayCount[15] = 1)

TmrIntrpt_setup

Arguments

Timer (0 through 3)

eight_sixteen (alarm specific)

prescale (alarm specific)

interrupt (1 for yes, 0 for no)

priority (1 for high interrupt, 0 for low)

clear (if we want to clear the counter)

Result
Read the code for more details, but sets up
one of four timers as potential interrupts.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 56 of 64

MOVWSPP

Arguments
WREG (value to write)

address (address to write to)

Result

SPPEPS = address
SPPDATA = WREG
Safety (integrity) check performed to assure
proper writing of value

MOVSPPW

Arguments address

Result

WREG = value at that address.
Safety (integrity) check performed to assure
proper reading of value

JSCII_TO_DISPLAY

Arguments
area (which 7Seg to write to)

jscii (hex offset in JSCII table)

Result
offset translated and stored at correct area in
display buffer.

SEGMENTS_TO_DISPLAY

Arguments
area (which 7Seg to write to)

jscii (actual bits to be displayed)

Result Display_Buf[area] = jscii

Sub_P_set_L

Arguments

flag_reg (register where interrupt flag is)

flag_bit (bit in register which is the flag)

s_p (sub-priority: 0-7)

Result
Start_Srvs_L[s_p] is 1 if service is needed
flag_reg[flag_bit] is cleared (turn off intrpt)

Sub_P_ex_L

Arguments
where_to (Label, Call to start service)

s_p (sub-priority: 0-7)

Result

Write in order of priority (highest first). If
currently executing, will continue to execute
interrupt, if we need to start, start. Clears
corresponding Start_Srvs_L bit when we
start as well setting the In_Service_L bit.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 57 of 64

Appendix E: JSCII Table

This is a set of characters mapped to program memory and are indexed by their hex value, similar to how

ASCII works. The first 16 entries line up to the numbers 0 through F, so translation of hex and BCD numbers

has been efficienized.

Character Offset

JSCII_0 0x00

JSCII_1 0x01

JSCII_2 0x02

JSCII_3 0x03

JSCII_4 0x04

JSCII_5 0x05

JSCII_6 0x06

JSCII_7 0x07

JSCII_8 0x08

JSCII_9 0x09

JSCII_A 0x0A

JSCII_B 0x0B

JSCII_C 0x0C

JSCII_D 0x0D

JSCII_E 0x0E

Character Offset

JSCII_F 0x0F

JSCII_SP 0x10

JSCII_UN 0x11

JSCII_UP 0x12

JSCII_HY 0x13

JSCII_DP 0x14

JSCII_EQ 0x15

JSCII_CO 0x16

JSCII_AP 0x16

JSCII_G 0x20

JSCII_H 0x21

JSCII_I 0x22

JSCII_J 0x23

JSCII_K 0x24

JSCII_L 0x25

Character Offset

JSCII_M 0x26

JSCII_N 0x27

JSCII_O 0x28

JSCII_P 0x29

JSCII_Q 0x2A

JSCII_R 0x2B

JSCII_S 0x2C

JSCII_T 0x2D

JSCII_U 0x2E

JSCII_V 0x2F

JSCII_W 0x30

JSCII_X 0x31

JSCII_Y 0x32

JSCII_Z 0x33

How they appear on the 7Seg display (W and M should repeat themselves)

 _ _ _ _ _ _

 | | | _| _| |_| |_ |_ |

 |_| | |_ _| | _| |_| |

 _ _ _ _ _

 |_| |_| |_| |_ _ _| |_ |_

 |_| _| | | |_| |_ |_| |_ |

 _ _ _ _

 _ _ |_| |_|

 _ . |_| |_|

 _ _

 | |_ | |_ | | | _

 |_| | | | |_| | |_ | | | |

 _ _ _

 _ |_| |_| _ |_ |_ | |

 |_| | | | _| |_ |_| |_|

 _

 | | |_| |_| _|

 |_| | | _| |_

Appendix F: Other Constants

SPP Address Definitions

CATHODES 0x00
ANODES 0x01
SWITCHES 0x02
RE_ENC 0x02

Rotary Encoder Constants

RE_Bit_A 7
RE_Bit_B 6

RE_Mask b'11000000'

LED Segment Definitions (Cathodes)

SS_A b'11011111'
SS_B b'11110111'
SS_C b'10111111'
SS_D b'11111101'
SS_E b'11111011'
SS_F b'01111111'
SS_G b'11101111'
SS_P b'11111110'

SS_ON b'00000000'
SS_OFF b'11111111'

SS_apo b'10111111'
SS_col b'11010111'

LED_11 b'01111111'
LED_12 b'10111111'
LED_21 b'11011111'
LED_22 b'11111011'
LED_31 b'11111110'

LED_32 b'11111101'

LED Segment Bit Definitions (Cathodes)

LED_11_bp 7 LED bit position
LED_12_bp 6 LED bit position
LED_21_bp 5 LED bit position
LED_22_bp 2 LED bit position

LED_31_bp 0 LED bit position

LED Area Definitions (Anodes)

DISP_RM b'11110111' rightmost 7seg
DISP_RC b'11101111' rightcenter 7seg
DISP_LC b'10111111' leftcenter 7seg
DISP_LM b'01111111' leftmost 7seg
DISP_COL b'11011111' colon and apostraphy
DISP_RED b'11111011' red LED's
DISP_GRN b'11111110' green LED's
DISP_YLW b'11111010' both red and green
DISP_ALL b'00000000' all on
DISP_7SEG b'00100111' all 7segs on

DISP_NONE b'11111111' all off

To set the high bit of FSR0 in LED_Write

argument to translate the WREG

argument

DISP_Trans b'100000000'

Alarm Stack Constants

Alarm_Base_addr 0x100
Alarm_Base_size 0x80
Alarm_Mod_Base_addr 0x180

Alarm_Mod_Base_size 0x80

Timing (in 1/100 of a second)

HOLDDOWNLIMIT 0x30 480 ms
STD_Times_Out 0x0320 8 seconds
STD_GoBack_Wait 0x0190 4 seconds

STD_Disp_Wait 0x00C8 2 seconds

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 59 of 64

Appendix G: Developer’s Notes

These are note I collected and typed out (in addition to paper notes, which will not be included). They are an

insight into my successes and frustrations. They are not complete, and should be taken at face value.

4-4-2008
 Displayed ‚John [traffic light]‛ on board using display algorithm.

4-5-2008
 Slowed down display refresh rate to ~1Hz, as well as spaced our ‘ghosting prevention step’ from
refresh step to assure that ghosting was not a problem.

4-6-2008
 When writing values to display using LED_Write rightmost seven segment value shown on leftmost
seven segment display as well, when calling left to right. Fixed by writing left to write, but leftmost last. Not a
problem with definitions. Not an issue with Refresh_LED subroutine. Possibly issue with writing to
Display_Buf + n ?

4-7-2008
 Query switches successfully and completely works (for up to two switches pressed in different blocks).

4-8-2008
 Master time interrupt is working (and accurate to 100Hz), timer 0 (and others) are causing ghosting and
incorrect display issues. One of which was a previous test I left in.

4-10-2008
 Found source of error talked about on 4-6-2008, had a test ‘I was here’ that was causing Display_Buf +
0 to get value of Display_Buf + n’s value when written to by my function LED_Write.

4-11-2008
 Can’t get switches to work with HD and PR states. Have opted to just update flags in a register when
switches are active.
 See notes on how to use switches in ‘switch’ section. Interrupt controls press and release of switch if
any function that looks at pressing a switch clears that switches flag. Interrupting at ~45.7Hz, too fast,
increments at about 34 Hz. Can press and release and increment just once, but that is hard to do. Cut
interrupt frequency in half: on ‘normal push’ increments by 2. Cut in half again, now it a ‘normal push’
sometimes doesn’t increment at all. I’ll leave it cut in half only once: making it interrupt at about 23 Hz.
Function will have to manage it smarter.
 Switch hold down counting seems to work well, EXCETP: causes red and green LED’s to change.
Problem with any switch that I hold down when associated with my test code. Without test code, (or testing
with that switch) you can hold down any switch and LED’s stay they same. Also seems to change the 7seg
display too. Error doesn’t happen if we don’t call LED_Write. Doesn’t seem to be a problem with
LED_Refresh subroutine either. Usually changes display of all digits (not just 1, or 1 color). Places getting
written to often (in main loop) seem to fix themselves (see a flicker, but stays correct). So an issue with
Display_Buf’s integrity? Doesn’t seem to turn on lower left LED light.
This error only happens when I hold down the button long enough to increment the test counter. Seems to
effect the LED’s more then the 7seg. Also seem to always be numbers displayed, not random lights. Seems to
pick one of the nibbles (usually lower) in MAIN_TEST counter and write it to some of the spaces in Display_Buf
(after translation). Sometimes error display is MSnibble of counter, but not always. Seems like LED_Write is
being called randomly with random arguments.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 60 of 64

Not an issue with SetHDCount. Was accidentally disabling HDCounter each time we hit zero, changed that,
errors seem to happen less frequently. Works when these two lines are commented out:
CALL SetHDCount ;; reset counter

SETF HDCount, 0 ;; since let go, disable counter

I don’t know why (acts like PR test code).
AAAAHHHHH!!! I found the error, in MT call, I was DECFSZ instead of DECF, skipping backing up the FSR0L
register, which is part of the display routine. Too many hours used to figure that out. (those two lines enabled
HDCount to be decremented inside of MT call).

4-24-2008
 After setting alarm to ring (MS[7]) it seems to get turned off automatically, not sure where. If you set it
to ring in your main loop, it ‘rings’ properly (LEDs flash green, yellow, red, off at 1 Hz). Also, states 26 and 36
don’t proceed properly, have to hit ‘t’ to get out of, then are stuck, can’t move buttons for a couple seconds.
(States 06 and 16 seem to still work).

4-25-2008
 Not an error: got time/date change functions to work off of pointers (call with amount change in W, and
what to change in FSR0). Makes minutes/seconds the same code, is really just the rules on the range of the
value you want to change (minutes can only be between 00 and 59).

4-26-2008
 Cannot have alarms at 0x800 (restricted). Putting them at 0x100, also placing alarm modifications at
0x180, so you will only be able to have 30 custom alarms (as opposed to 64).
 LED’s do not refresh correctly when rotary encode interrupt is established. I wasn’t backing up FSR0,
did that and now I can see what should be displayed, except lots of flickering and buttons are not the same
anymore. Removal of earlier attempt to correct display corrected button use, but still flicker. Writing 1’s to the
anodes fixed this. Ghosting still seems to exist, but I don’t think it is from the rotary encoder.
 Strange rotary encoder error: when turning from RE_POS > 0 to RE_POS < 0, we turn on the bottom
two LED’s to green (depending on circumstance, turns on all green LED’s). Ok, not always turning on the
same green LED’s, but most of them, most of the time.

4-30-2008
 Had an error when turning on the ‘buzz’ interrupt: display was flickery, adjusted the SPP macros, then
there was no display update. Just undid it all.

5-1-2008
 Got the dial in the snooze to work, but most of the snooze part does not. Calculation of snooze alarm
from MT/Md and snooze_duration is not working correctly. I think it comes from DelayState being altered in
state00, which needs to be partially run to see display, but the button pressing part should be skipped over.
Seemed to have fixed that problem . After I took out the code to test the display (made it look at switches in
state00) it stared flickering a bunch, and only in state00, everything else seems to work. (Pressing ‘a’ while
alarm is ringing still goes to snooze).
 Tried putting display refresh in RE interrupt, but display is very dim, though should be at around 2kHz.
No real flicker though. Tried in MT interrupt (100Hz) very, very flickery, seizer. Copied the call to
Refresh_LED in the middle of State00, seemed to work well, well, maybe not: left and right most 7seg look
bright, but others duller. Sometimes it switches, and the others are brighter (seems to depend on MT[min,
low]). I put it in twice (into MS00) and it seems to help, but other states brighter.
 Have to change daily alarm’s date when you change master date.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 61 of 64

5-2-2008
 Having trouble showing the difference between time of alarm and master time (difference is how long is
left of snooze alarm). Adjusting for BCD and 0 through 59 possible is too hard, so subtract both, if result gives
no borrow (STATUS[0]) then ok, else minutes left is 60-Alarm’s Minutes + Time’s Minutes.

5-4-2008
 Starting to add the code to add/modify user defined alarms. Yesterday and today I changed how you
review/set alarms, it is all done in the same functions, just start and exit differently. Don’t let modify stack
pointers until done editing alarm, then you don’t have to worry about it ringing while setting it. Also allows you
to cancel that alarm (not written till you see ‘set’)

5-5-2008
 Trying to get programming done tonight (won’t happen) seem to add alarms that ring everyday or once
(won’t get certain days of the week). Still need to have LED’s reflect what you are doing.

5-6-2008
 Able to successfully add and delete alarms. Made the decision to not implement setting (or seeing) an
alarm to the day of the week (can’t have it ring every Tuesday), but have left in the states to do so, just not
filled up (taken care so we don’t accidentally get to one).
 Fixed RE error of turning down past 00 00 to FF FF, there was a DECFSZ instruction that should have
been a DECF.
 Almost done, need to:
If daily alarm rings, set ‘ALARM ON’ bit to red, if special alarms set that LED to green.
Need to make the modifications work correctly.
need to set/unset daily alarm

5-7-2008
 Got ‘Alarm On’ light to properly light.

 To set/disable the daily alarm:
 disable: set date to 00 00
 enable: set date to Md, check to see if set, if not, add 1

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 62 of 64

D10K

I have NOT done much/any testing of the alarm clock when the date roles over from 9999 to 0000. I know I

have stated that the initial time should not be in the first day, mostly because that is where I place the daily

alarm when it is not ringing. The error could range from the daily alarm going off no matter what on day 0000

to the user being confused for various other reasons.

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 63 of 64

Index

A

Accuracy · 9

active · 19, 29, 38, 57

Alarm

alarm ringing · 20, 21

alarm clock · 4, 9, 16, 60

B

boot · 6, 20

C

colon · 10, 11, 23, 56

compact BCD · 9, 18, 40, 41, 49, 50, 51

counter · 4, 7, 8, 10, 14, 15, 16, 17, 20, 22, 38, 48, 53, 57, 58

D

delay state · 7, 17, 20, 23, 44

Display · 6, 7, 8, 10, 11, 16, 17, 19, 20, 21, 23, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 39, 41, 46, 47, 48, 49, 54, 55, 57, 58

I

I/O

anode · 11, 37, 58

button · 4, 15, 17, 18, 20, 21, 27, 57, 58

cathode · 11, 37

Pulse Width Modulator · 9

Switches · 6, 11, 12, 38

interrupt · 6, 7, 8, 9, 10, 12, 14, 16, 20, 21, 40, 42, 43, 48, 51,

52, 53, 54, 57, 58

J

JSCII · 8, 11, 39, 48, 54, 55

L

latency · 9, 10

Little Endian · 4

M

Main Loop · 6, 7, 8, 10, 11, 16, 21, 38, 40, 43, 57, 58

Microchip · 4, 37

P

P24 · 4

PIC · 2, 6, 37

PIC18 · 4, 8, 20, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52

prescale · 10, 20, 53

R

register · 7, 17, 20, 21, 37, 38, 40, 51, 53, 54, 57, 58

Register

BSR · 10

Display_Buf · 57

FSR0 · 11, 45, 48, 49, 50, 51, 56, 58

FSR1 · 31, 32, 33, 34, 35, 44, 46

FSR2 · 31, 32, 33, 34, 35, 44, 46

MASTER_DATE · 9, 10, 40, 45, 46, 49

MASTER_STATE · 4, 20, 21, 22, 23, 40, 43, 44, 53

MASTER_TIME · 8, 9, 10, 40, 43, 45, 46, 49

RE_POS · 16, 41, 51, 58

SPP · 11, 16, 37, 51, 56, 58

SPPDATA · 13, 37, 54

SPPEPS · 37, 54

STATUS · 10, 59

Sw_State_16 · 12, 14, 42, 44, 52

Sw_State_7C · 12, 14, 15, 42, 44, 52

WREG · 10, 11, 44, 45, 47, 48, 49, 50, 51, 54, 56

Registers · 4

S

Seven Segment · 11, 57

7seg · 30, 37, 56, 57, 58

State · 4, 5, 6, 7, 8, 10, 12, 15, 16, 17, 19, 20, 21, 23, 27, 29,

30, 31, 32, 34, 35, 36, 38, 40, 41, 44, 45, 48, 51

current state · 7, 10, 16, 20, 21, 40, 41, 51

default state · 16, 17, 20, 21, 27, 28, 29, 30, 38, 44, 53

passive states · 16, 19

Super States · 20

 PIC MAXI ALARM Developer’s Guide

 John Tooker PIC18F4550 Implementation

5/19/08 Page 64 of 64

T

Timer

Timer 0 · 20

Timer 1 · 8, 20, 48

timer 2 · 9

Timer 2 · 20

Timer 3 · 20

